【Unity3D赛车游戏】【四】在Unity中添加阿克曼转向,下压力,质心会让汽车更稳定

在这里插入图片描述


👨‍💻个人主页:@元宇宙-秩沅

👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅!

👨‍💻 本文由 秩沅 原创

👨‍💻 收录于专栏:Unity游戏demo

🅰️Unity3D赛车游戏



文章目录

    • 🅰️Unity3D赛车游戏
    • 前言
    • 🎶(==A==)车辆优化——阿克曼转向添加
        • 😶‍🌫️认识阿克曼转向
        • 😶‍🌫️区别:
        • 😶‍🌫️关键代码
        • 😶‍🌫️完整代码
    • 🎶(==B==)车辆优化——车身持续稳定的优化
        • 😶‍🌫️速度属性实时转换
        • 😶‍🌫️为车子添加下压力
        • 😶‍🌫️质心的添加centerMess
        • 😶‍🌫️轮胎的平滑度的显示
    • 🅰️


前言


😶‍🌫️版本: Unity2021
😶‍🌫️适合人群:Unity初学者
😶‍🌫️学习目标:3D赛车游戏的基础制作
😶‍🌫️技能掌握:



🎶(A车辆优化——阿克曼转向添加


😶‍🌫️认识阿克曼转向

引用:阿克曼转向是一种现代汽车的转向方式,也是移动机器人的一种运动模式,在汽车转弯的时候,内外轮转过的角度不一样,内侧轮胎转弯半径小于外侧轮胎

原理图:
_____________在这里插入图片描述
简单理解一个杆子把左轮和右轮连接起来一起转。

在这里插入图片描述
左轮的旋转的半径小于右轮

优点:大大减小了车轮转向需要的空间,转向更加稳定

  • 阿克曼公式:

在这里插入图片描述
β为汽车前外轮转角,α为汽车前内轮转角,K为两主销中心距,L为轴距。

在这里插入图片描述

😶‍🌫️区别:

  • 未添加阿克曼转向之前的原理:

    通过控制轮子的最大转向范围来转向

在这里插入图片描述

  • 添加之后

    更稳定,机动性更强

在这里插入图片描述

😶‍🌫️关键代码

  • 后轮距尺寸设置为1.5f ,轴距设置为2.55f ,radius 默认为6,radius 越大旋转的角度看起来越小
 if (horizontal > 0 ) {
//后轮距尺寸设置为1.5f ,轴距设置为2.55f ,radius 默认为6,radius 越大旋转的角度看起来越小wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * horizontal;wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * horizontal;} else if (horizontal < 0 ) {                                                          wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * horizontal;wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * horizontal;} else {wheels[0].steerAngle =0;wheels[1].steerAngle =0;}

😶‍🌫️完整代码

在这里插入图片描述

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
//-------------------------------------
//—————————————————————————————————————
//___________项目:       ______________
//___________功能:  车轮的运动
//___________创建者:_______秩沅________
//_____________________________________
//-------------------------------------//驱动模式的选择
public enum EDriveType
{frontDrive,   //前轮驱动backDrive,    //后轮驱动allDrive      //四驱
}public class WheelMove : MonoBehaviour
{//-------------------------------------------//四个轮子的碰撞器public WheelCollider[] wheels ;//网格的获取public GameObject[] wheelMesh;//扭矩力度public float motorflaot = 200f;//初始化三维向量和四元数private Vector3 wheelPosition = Vector3.zero;private Quaternion wheelRotation = Quaternion.identity;//-------------------------------------------//驱动模式选择 _默认前驱public EDriveType DriveType = EDriveType.frontDrive;//轮半径public float radius = 0.25f;private void FixedUpdate(){WheelsAnimation(); //车轮动画VerticalContorl(); //驱动管理HorizontalContolr(); //转向管理}//垂直轴方向管理(驱动管理)public void VerticalContorl(){switch (DriveType){case EDriveType.frontDrive: //选择前驱if (InputManager.InputManagerment.vertical != 0) //当按下WS键时生效{for (int i = 0; i < wheels.Length - 2; i++){//扭矩力度wheels[i].motorTorque = InputManager.InputManagerment.vertical *(motorflaot / 2); //扭矩马力归半}}break;case EDriveType.backDrive://选择后驱if (InputManager.InputManagerment.vertical != 0) //当按下WS键时生效{for (int i = 2; i < wheels.Length; i++){//扭矩力度wheels[i].motorTorque = InputManager.InputManagerment.vertical * (motorflaot / 2); //扭矩马力归半}}break;case EDriveType.allDrive://选择四驱if (InputManager.InputManagerment.vertical != 0) //当按下WS键时生效{for (int i = 0; i < wheels.Length; i++){//扭矩力度wheels[i].motorTorque = InputManager.InputManagerment.vertical * ( motorflaot / 4 ); //扭矩马力/4}}break;default:break;}}//水平轴方向管理(转向管理)public void HorizontalContolr(){if (InputManager.InputManagerment.horizontal > 0){//后轮距尺寸设置为1.5f ,轴距设置为2.55f ,radius 默认为6,radius 越大旋转的角度看起来越小wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * InputManager.InputManagerment.horizontal;wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * InputManager.InputManagerment.horizontal;}else if (InputManager.InputManagerment.horizontal < 0){wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * InputManager.InputManagerment.horizontal;wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * InputManager.InputManagerment.horizontal;}else{wheels[0].steerAngle = 0;wheels[1].steerAngle = 0;}}//车轮动画相关public  void WheelsAnimation(){for (int i = 0; i < wheels.Length ; i++){//获取当前空间的车轮位置 和 角度wheels[i].GetWorldPose(out wheelPosition, out wheelRotation);//赋值给wheelMesh[i].transform.position = wheelPosition;print(wheelRotation);wheelMesh[i].transform.rotation = wheelRotation * Quaternion .AngleAxis (90,Vector3 .forward );}}
}}}
}

🎶(B车辆优化——车身持续稳定的优化


WheelMove脚本 ——> CarMoveControl脚本 更改脚本名


😶‍🌫️速度属性实时转换


  • 每小时多少公里 和 每秒多少米的对应关系 ——1m/s = 3.6km/h

速度属性建议改成Int类型 ,float类型会上下浮动不准确

 //1m/s = 3.6km/hKm_H =(int)(rigidbody.velocity.magnitude * 3.6) ;Km_H = Mathf.Clamp( Km_H,0, 200 );   //油门速度为 0 到 200 Km/H之间
  • 相机测速 m/s
    在这里插入图片描述
  //相机监测实时速度Control = target.GetComponent<CarMoveControl>();speed = (int )Control.Km_H / 4;speed = Mathf.Clamp(0, 55,speed );   //对应最大200公里每小时
  • 添加四个轮子的实时速度,对应虚度属性,可以明显的观察四驱和二驱的汽车动力

在这里插入图片描述

    //车辆物理属性相关public void VerticalAttribute(){//1m/s = 3.6km/hKm_H =(int)(rigidbody.velocity.magnitude * 3.6) ;Km_H = Mathf.Clamp( Km_H,0, 200 );   //油门速度为 0 到 200 Km/H之间//显示每个轮胎的扭矩f_right = wheels[0].motorTorque;f_left  = wheels[1].motorTorque;b_right = wheels[2].motorTorque;b_left  = wheels[3].motorTorque;}

😶‍🌫️为车子添加下压力


知识百科: 什么是下压力
下压力是车在行进中空气在车体上下流速不一产生的,使空气的总压力指向地面从而增加车的抓地力.

速度越大,下压力越大,抓地更强,越不易翻车
在这里插入图片描述

  • 关键代码
  //-------------下压力添加-----------------//速度越大,下压力越大,抓地更强rigidbody.AddForce(-transform.up * downForceValue * rigidbody.velocity .magnitude );

😶‍🌫️质心的添加centerMess


知识百科:什么是质心?——质量中心
汽车制造商在设计汽车时会考虑质心的位置和重心高度,以尽可能减小质心侧偏角。 一些高性能汽车甚至会采用主动悬挂系统来控制车身侧倾,从而减小质心侧偏角,提高车辆的稳定性和操控性。

质量中心越贴下,越不容易翻
在这里插入图片描述

        //-------------质量中心同步----------------//质量中心越贴下,越不容易翻rigidbody.centerOfMass = CenterMass;
  • 手刹的添加
//手刹管理public void HandbrakControl(){if(InputManager.InputManagerment .handbanl ){     //后轮刹车wheels[2].brakeTorque  = brakVualue;wheels[3].brakeTorque  = brakVualue;}else{wheels[2].brakeTorque = 0;wheels[3].brakeTorque = 0;}}

😶‍🌫️轮胎的平滑度的显示


wheelhit.forwardSlip;用来观看刹车轮胎在滚动方向上打滑。加速滑移为负,制动滑为正
_______在这里插入图片描述

for (int i = 0; i < slip.Length; i++){WheelHit wheelhit;wheels[i].GetGroundHit(out wheelhit);slip[i] = wheelhit.forwardSlip; //轮胎在滚动方向上打滑。加速滑移为负,制动滑为正}               

🅰️

在这里插入图片描述
在这里插入图片描述


⭐【Unityc#专题篇】之c#进阶篇】

⭐【Unityc#专题篇】之c#核心篇】

⭐【Unityc#专题篇】之c#基础篇】

⭐【Unity-c#专题篇】之c#入门篇】

【Unityc#专题篇】—进阶章题单实践练习

⭐【Unityc#专题篇】—基础章题单实践练习

【Unityc#专题篇】—核心章题单实践练习


你们的点赞👍 收藏⭐ 留言📝 关注✅是我持续创作,输出优质内容的最大动力!


在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/81870.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java八股文面试[JVM]——类加载器

一、类加载器的概念 类加载器是Java虚拟机用于加载类文件的一种机制。在Java中&#xff0c;每个类都由类加载器加载&#xff0c;并在运行时被创建为一个Class对象。类加载器负责从文件系统、网络或其他来源中加载类的字节码&#xff0c;并将其转换为可执行的Java对象。类加载器…

vue 简单实验 v-bind 变量与html属性绑定

1.代码 <script src"https://unpkg.com/vuenext" rel"external nofollow" ></script> <div id"bind-attribute"><span v-bind:title"message">鼠标悬停几秒钟查看此处动态绑定的提示信息&#xff01;</sp…

《深度学习计算机视觉 》书籍分享(包邮送书三本)

深度学习计算机视觉介绍 随着计算机技术的发展和进步&#xff0c;计算机视觉领域得到了广泛的关注和研究。而深度学习作为一种强大的机器学习方法&#xff0c;已经成为计算机视觉领域的重要工具之一。本文将介绍深度学习在计算机视觉中的应用和取得的成果。 深度学习是一种模…

Log4Qt日志框架(1)- 引入到QT中

Log4Qt日志框架&#xff08;1&#xff09;- 引入到QT中 1 下载源码2 简介3 加入到自己的项目中3.1 使用库文件3.2 引入源文件 4 说明 1 下载源码 github&#xff1a;https://github.com/MEONMedical/Log4Qt 官方(版本较老)&#xff1a;https://sourceforge.net/projects/log4q…

【PHP】文件包含-includerequire

文章目录 文件包含意义&#xff1a;四种形式文件加载原理include和require的区别文件的加载路径文件嵌套包含 文件包含 文件包含&#xff1a;在一个PHP脚本中&#xff0c;去将另外一个文件&#xff08;PHP&#xff09;包含进来&#xff0c;去合作完成一件事情。 意义&#xf…

移动web开发rem适配布局

移动web开发rem适配布局 学习目标: 能够使用rem单位能够使用媒体查询的基本语法能够使用Less的基本语法能够使用Less中的嵌套能够使用Less中的运算能够使用2种rem适配方案 1.rem单位基础 2.媒体查询 2.1什么是媒体查询 媒体查询是css3的新语法 使用media查间&#xff0c…

动物体外受精手术VR模拟仿真培训系统保证学生及标本的安全

奶牛是养殖业主要的资源&#xff0c;因此保证奶牛的健康对养殖业的成功和可持续发展具有重要已用&#xff0c;奶牛有一些常见易发病&#xff0c;一旦处理不当&#xff0c;对奶牛业都会造成较大的经济损失&#xff0c;传统的奶牛手术培训实操难度大、风险高且花费大&#xff0c;…

掌握AI助手的魔法工具:解密Prompt(提示)在AIGC时代的应用「上篇」

在当今的AIGC时代&#xff0c;我们面临着越来越多的人工智能技术和应用。其中一个引人注目的工具就是Prompt&#xff08;提示&#xff09;。它就像是一种魔法&#xff0c;可以让我们与AI助手进行更加互动和有针对性的对话。那么&#xff0c;让我们一起来了解一下Prompt&#xf…

gitlab合并分支

我的分支为 cheng 第一步&#xff1a; 增加新的代码 第二步&#xff1a;提交并推送 第三步&#xff1a;打开gitlab&#xff0c;找到对应项目 这样就成功把cheng分支合并到dev-test分支了

2023年高教社杯 国赛数学建模思路 - 复盘:光照强度计算的优化模型

文章目录 0 赛题思路1 问题要求2 假设约定3 符号约定4 建立模型5 模型求解6 实现代码 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 问题要求 现在已知一个教室长为15米&#xff0c;宽为12米&…

国产调度器之光——Fsched到底有多能打?

这是一篇推荐我们速石自研调度器——Fsched的文章。 看起来在专门写调度器&#xff0c;但又不完全在写。 往下看&#xff0c;你就懂了。 本篇一共五个章节&#xff1a; 一、介绍一下主角——速石自研调度器Fsched 二、只要有个调度器&#xff0c;就够了吗&#xff1f; 三…

RISC-V公测平台发布 · 数据库在RISC-V服务器上的适配评估

前言 上一期讲到YCSB在RISC-V服务器上对MySQL进行性能测试&#xff08;RISC-V公测平台发布 使用YCSB测试SG2042上的MySQL性能&#xff09;&#xff0c;在这一期文章中&#xff0c;我们继续深入讨论RISC-V数据库的应用。本期就继续利用HS-2平台来测试数据库软件在RISC-V服务器…