基于数据湖的多流拼接方案-HUDI概念篇

目录

一、为什么需要HUDI?

1. 传统技术选型存在哪些问题?

2. Hudi有什么优点?

基于 Hudi Payload 机制的多流拼接方案:

二、HUDI的应用场景

1. 什么场景适合使用hudi?

2. 什么场景不适合使用hudi?

三、什么是HUDI?HUDI能做什么?

1. 什么是HUDI?

2. HUDI能做什么(特性)?

四、HUDI的概念&原理

1. 概念

2. 原理

五、流批一体


一、为什么需要HUDI?

1. 传统技术选型存在哪些问题?

【离线方面】:

这种T+1延迟的结果已经无法满足商业分析同学的日常分析需求。

【实时方面】:

有些场景需要基于具有相同主键的多个数据源实时构建一个大宽表,数据源一般包括 Kafka 中的指标数据,以及 KV 数据库中的维度数据。

业务侧通常会基于实时计算引擎在流上做多个数据源的 JOIN 产出这个宽表,但这种解决方案在实践中面临较多挑战,主要可分为以下两种情况:

01 - 维表 JOIN

  • 场景挑战:指标数据与维度数据进行关联,其中维度数据量比较大,指标数据 QPS 比较高,导致数据可能会产出延迟。
  • 当前方案:将部分维度数据缓存起起来,缓解高 QPS 下访问维度数据存储引擎产生的任务背压问题。
  • 存在问题:由于业务方的维度数据和指标数据时间差比较大,所以指标数据流无法设置合理的 TTL;而且存在 Cache 中维度数据没有及时更新,导致下游数据不准确的问题。

02 - 多流 JOIN

  • 场景挑战:多个指标数据进行关联,不同指标数据可能会出现时间差比较大的异常情况。
  • 当前方案:使用基于窗口的 JOIN,并且维持一个比较大的状态。
  • 存在问题:维持大的状态不仅会给内存带来的一定的压力,同时 Checkpoint 和 Restore 的时间会变 得更长,可能会导致任务背压。

总结上述场景遇到的挑战,主要可归结为以下两点:

由于多流之间时间差比较大,需要维持大状态,同时 TTL 不好设置。

由于对维度数据做了 Cache,维度数据数据更新不及时,导致下游数据不准确。

0

2. Hudi有什么优点?

基于 Hudi Payload 机制的多流拼接方案:

(Payload是一个条数据的内容的抽象,决定了同一个主键的数据的增删改查逻辑也决定了其序列化的方式。通过对payload的自定义,可以实现数据的灵活合并,数据的自定义编码序列化等,丰富Hudi现有的语义,提升性能。)

  1. 多流数据完全在存储层进行拼接,与计算引擎无关,因此不需要保留状态及其 TTL 的设置。
  2. 维度数据和指标数据作为不同的流独立更新,更新过程中不需要做多流数据合并,下游读取时再 Merge 多流数据,因此不需要缓存维度数据,同时可以在执行 Compact 时进行 Merge,加速下游查询。
  3. 支持离线场景和流批混合场景。
  4. 内置通用模板,支持数据去重等通用接口,同时可满足用户定制化数据处理需求。

二、HUDI的应用场景

1. 什么场景适合使用hudi?

0. 具有相同主键的多个数据源构建一个大宽表;

1. 近实时DB数据入仓/湖:把原来T + 1的数据新鲜度提升到分钟级别;

2. 近实时OLAP:分钟级别的端到端数据新鲜度,同时又非常开放的OLAP查询引擎可以适配;

3. 近实时ETL;

2. 什么场景不适合使用hudi?

下游对时效性要求较高,对数据延迟容忍度较低;

三、什么是HUDI?HUDI能做什么?

1. 什么是HUDI?

Hudi是Hadoop Updates and Incrementals的简写,它是由Uber开发并开源的Data Lakes解决方案。Hudi 用于管理的数据库层上构建具有增量数据管道的流式数据湖,同时针对湖引擎和常规批处理进行了优化。简言之,Hudi是一种针对分析型业务的、扫描优化的数据存储抽象,它能够使DFS数据集在分钟级的时延内支持变更,也支持下游系统对这个数据集的增量处理

1. Apache Hudi 本身不存储数据,仅仅管理数据,借助外部存储引擎存储数据,比如HDFS、S3;

2. 此外,Apache Hudi 也不分析数据,需要使用计算分析引擎,查询和保存数据,比如Spark或Flink

参考:Hudi学习一:Hudi简介_Hub-Link的博客-CSDN博客

2. HUDI能做什么(特性)?

  1. 开放性:上游支持多种数据源格式,下游查询端也同样支持多种查询引擎;
  2. 丰富的事务支持:对ACID语义(原子性、一致性、隔离性、持久性)的增强;
  3. Hudi 保管修改历史,可以做时间旅行或回退;
  4. Hudi 内部有主键到文件级的索引,默认是记录到文件的布隆过滤器;

四、HUDI的概念&原理

1. 概念

COW表(Copy On Write):

        在数据写入的时候,通过复制旧文件数据并且与新写入的数据进行合并,对 Hudi 的每一个新批次写入都将创建相应数据文件的新版本。

MOR表(Merge On Read):

        对于具有要更新记录的现有数据文件,Hudi 创建增量日志文件记录更新数据。此在写入期间不会合并或创建较新的数据文件版本;在进行数据读取的时候,将本批次读取到的数据进行Merge。Hudi 使用压缩机制来将数据文件和日志文件合并在一起并创建更新版本的数据文件。

指标

COW

MOR

更新代价

读取延迟

一般

写放大

总结:COW适用于读多写少的场景;MOR适用于写多读少的场景。

参考:腾讯广告业务基于Apache Flink + Hudi的批流一体实践 - 墨天轮 (modb.pro)

2. 原理

Hudi存储分为两个部分:

元数据:

         .hoodie目录对应着表的元数据信息,包括表的版本管理(Timeline)、归档目录(存放过时的instant也就是版本),一个instant记录了一次提交(commit)的行为、时间戳和状态,Hudi以时间轴的形式维护了在数据集上执行的所有操作的元数据;

数据: 

        和hive一样,以分区方式存放数据;分区里面存放着Base File(.parquet)和Log File(.log.*);

MOR表数据组织架构:

        数据构成关系:table -> partition -> FileGroup -> FileSlice -> parquet + log ;

五、流批一体

Flink + Hudi

Flink实现了计算框架一致

Hudi实现了存储框架一致(不能使用Kafka、Hive,因为不支持迟到数据对结果进行修改,以及长时间的数据回溯);

Hudi(Hadoop Upserts Deletes and Incrementals)是一个开源的数据湖解决方案,旨在简化大数据湖的数据管理和增量处理操作。Hudi 在 Apache Hadoop 生态系统中被广泛使用,并提供了一些核心功能。

以下是 Hudi 的核心功能:

  1. 增量写入(Incremental Writes):Hudi 允许在数据湖中进行增量写入操作。它支持更新(upsert)和删除(delete)操作,这意味着可以有效地处理变化的数据。用户可以仅仅写入发生变化的数据,而无需覆盖整个数据集。
  2. 原子性(Atomicity):Hudi 提供原子性写入操作,确保数据写入是事务性的。这意味着要么所有的写入操作都成功,要么都失败,保持数据的一致性。如果写入过程中发生故障或错误,Hudi 可以回滚写入操作,避免数据损坏。
  3. 时态数据(Point-in-Time Queries):Hudi 允许在数据湖中执行时态查询,即可以查询数据的历史版本。这对于分析和回溯数据非常有用。Hudi 使用了写时复制(copy-on-write)的机制来保存数据的历史版本,并提供了灵活的查询接口。
  4. 数据索引(Data Indexing):Hudi 提供了一种高效的数据索引机制,以加速数据查询操作。它使用了基于时间和位置的索引,可以快速定位和访问特定数据分区或时间范围内的数据。
  5. 建表和模式演化(Table Creation and Schema Evolution):Hudi 允许在数据湖中创建表格,并支持模式演化。它可以处理表格架构的变化,例如添加、删除或修改列。这使得在数据湖中进行架构更改变得更加灵活和简单。
  6. 兼容多种数据格式(Compatibility with Multiple Data Formats):Hudi 可以与多种数据格式兼容,包括 Parquet、Avro、ORC 等。这意味着可以使用不同的数据格式进行存储和读取,根据具体需求选择最合适的格式。

总而言之,Hudi 提供了一种强大而灵活的方式来管理和处理数据湖中的大数据。它的核心功能包括增量写入、原子性操作、时态数据查询、数据索引、表格创建和模式演化,以及与多种数据格式的兼容性。这些功能使得在数据湖中进行数据管理和处理变得更加高效和便捷。


其他HUDI相关资料:

基于Hudi的流批一体:

**基于Apache Hudi + Flink多流拼接(大宽表)最佳实践:万字长文:基于Apache Hudi + Flink多流拼接(大宽表)最佳实践-腾讯云开发者社区-腾讯云

*流批一体Hudi近实时数仓实践:干货|流批一体Hudi近实时数仓实践-腾讯云开发者社区-腾讯云

*腾讯广告业务基于Apache Flink + Hudi的批流一体实践:腾讯广告业务基于Apache Flink + Hudi的批流一体实践 - 墨天轮

*基于 Hudi 的湖仓一体技术在 Shopee 的实践:基于 Hudi 的湖仓一体技术在 Shopee 的实践 - 掘金

Flink+Hudi 构架仓湖一体化解决方案:Apache Flink学习网 ***

触宝科技基于Apache Hudi的流批一体架构实践:https://www.cnblogs.com/leesf456/p/15000030.html

Apache Hudi 原理: Hudi 原理 | 聊一聊 Apache Hudi 原理-轻识 *****

数据湖架构开发-Hudi入门教程

数据湖架构开发-Hudi入门教程 - 知乎

Hudi 快速体验使用(含操作详细步骤及截图)_安装完hudi后如何远程使用_半岛铁子_的博客-CSDN博客

Apache Hudi入门指南(含代码示例) - 墨天轮

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/82311.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue实现表格的动态高度

需求:表格能够根据窗口的大小自动适配页面高度 防抖和节流函数的使用场景是当需要对频繁触发的事件进行限制时,例如: 防抖函数常用于限制用户在短时间内多次触发某一事件,例如搜索框输入并搜索,当用户一直在输入时,我们可以使用防抖函数来避免多次请求搜索结果,减轻服…

c#扩展方法的使用

扩展方法可以向现有类型“添加”方法,无需创建新的派生类型、重新编译或以其他方式修改原始类型,用起来很方便,下面是我写的例子,为string这个常用的类型添加一个showmes方法,以下是扩展方法的代码: public…

Tomcat的安装与介绍

首先我们先了解一下什么是服务器?什么是服务器软件? 什么是服务器?安装了服务器软件的计算机。 什么是服务器软件? 服务器软件是一种运行在服务器操作系统上,用于接收和处理客户端请求,并提供相应服务和资…

自动化测试之Junit

Junit引入注解参数化单参数多参数方法传参 测试用例执行顺序断言测试套件 Junit引入 Junit来编写和组织自动化测试用例,使用Selenium来实际模拟用户与Web应用程序的交互。也就是使用JUnit的测试功能来管理和运行Selenium测试。常见的做法是,使用JUnit作…

【Linux】权限问题

Linux权限 一、Linux 权限的概念二、Linux 权限管理1. 文件访问者的分类2. 文件类型和访问权限(事物属性)3. 文件访问权限的相关设置方法 三、默认权限1. 对文件和目录进行操作需要的权限2. 文件和目录的默认权限3. 粘滞位 一、Linux 权限的概念 Linux …

windows窗口背景色修改方法

windows也不知道什么时候将notepad, word, vs的背景色由白色变成了浅绿色,用了一段时间没去改觉得麻烦,就一直用下去了,今天有时间找了下方法改回了白色。 1. 被动默认浅绿色效果 2. 修改注册表. 保存,重启电脑. 3. 恢复如初.

java+springboot+mysql村务档案管理系统

项目介绍: 使用javaspringbootmysql开发的村务档案管理系统,系统包含超级管理员、工作人员角色,功能如下: 超级管理员:系统用户管理(工作人员管理);公开资料;会议记录&…

【校招VIP】专业课考点之死锁检测与恢复

考点介绍: 根据不少同学的面试反馈,最近阿里和字节跳动面试时面试官都问到了死锁问题。如字节跳动考察的问题是:什么是线程死锁?死锁如何产生?死锁如何检测与恢复?其产生的原理与对应的解决方案都是重点考察…

Linux内核学习(八)—— 内存管理(基于Linux 2.6内核)

目录 一、页(page) 二、区(zone) 三、页操作 四、kmalloc() 五、vmalloc() 六、slab 分配器 七、在栈上的静态分配 一、页(page) 内核把物理页作为内存管理的基本单位。尽管处理器的最小可寻 …

全新土地销售活动 Turkishverse——在数字十字路口占据一席之地

准备好与来自该地区的众多世界知名合作伙伴一起探索土耳其文化和历史吧! 简单介绍 ● 在这个弘扬土耳其文化和历史的新社区中,共有 433 块 LAND 可供出售,其中包括 □ 380 块标准 LAND □ 48 块优质 LAND □ 5 个 Estate ● LAND 销售抽…

营销数字化|企业级 AIGC 工具的「iPhone 时刻」

2007 年,乔布斯发布了第一款 iPhone,从此彻底改变了手机行业的市场走向。iPhone 成功的背后,一个很重要的原因是:它让用户以更简单、更符合直觉的方式来使用手机。 如今,AIGC 工具也在等待它的「iPhone 时刻」&#xf…

lwIP更新记10:IP 冲突检测

lwip-2.2.0-rc1 版本于 2023 年 6 月 29 日发布,带来了我期盼已久的 IPv4 冲突检测 功能。 lwip-2.2.0-rc1 版本重新回归了 master 分支(主分支),不再使用单独的稳定分支。 master 分支 是一个 Git(版本控制程序&…