PySpark安装及WordCount实现(基于Ubuntu)

先盘点一下要安装哪些东西:

  1. VMware
  2. ubuntu 14.04(64位)
  3. Java环境(JDK 1.8)
  4. Hadoop 2.7.1
  5. Spark 2.4.0(Local模式)
  6. Pycharm

(一)Ubuntu 

VMware 和 ubuntu 14.04(64位)的安装见:在vmware上安装ubuntu 14.04(64位)_study_note_mark的博客-CSDN博客

安装Ubuntu完成后需要完成一些前期准备工作,包括:创建Hadoop用户、更新apt、安装ssh及配置ssh无密码登录,参考:Hadoop安装教程_单机/伪分布式配置_Hadoop2.6.0(2.7.1)/Ubuntu14.04(16.04)_厦大数据库实验室博客

总结:

  • 在Ubuntu里打开终端窗口的快捷键是 ctrl+alt+t 
  • sudo命令:sudo是ubuntu中一种权限管理机制,管理员可以授权给一些普通用户去执行一些需要root权限执行的操作。当使用sudo命令时,就需要输入您当前用户的密码
  • 在Ubuntu终端窗口中,复制粘贴的快捷键需要加上shift,即粘贴是ctrl+shift+v
  • 更改软件源:Ubuntu20.04更新软件源路径_ubuntu20.04软件和更新在哪_donnieliu的博客-CSDN博客​​​​​​

  • vim编辑器:
    • 正常模式:主要用来浏览文本内容。一开始打开vim都是正常模式。在任何模式下按下Esc键就可以返回正常模式
    • 插入编辑模式:用来向文本中添加内容。在正常模式下,输入i键即可进入插入编辑模式
    • 退出vim:如果有利用vim修改任何的文本,一定要记得保存。Esc键退回到正常模式中,然后输入:wq即可保存文本并退出vim
  • ssh登录:类似于远程登录。可以登录某台Linux主机,并在上面运行命令
  • 在Linux系统中,~ 代表的是用户的主文件夹,即 "/home/用户名" 这个目录,如你的用户名为 hadoop,则 ~ 就代表 "/home/hadoop/"

(二)Java(JDK 1.8)

参考Hadoop安装教程_单机/伪分布式配置_Hadoop2.6.0(2.7.1)/Ubuntu14.04(16.04)_厦大数据库实验室博客

总结:

  • 常见Linux命令:Linux系统常用命令_厦大数据库实验室博客
  • Linux管道命令:Linux Shell中的管道命令_厦大数据库实验室博客
  • vim编辑器用法:Linux系统中vim编辑器的安装和使用方法_厦大数据库实验室博客

(三)Hadoop 2.7.1

Hadoop安装、伪分布式配置、启动Yarn参考Hadoop安装教程_单机/伪分布式配置_Hadoop2.6.0(2.7.1)/Ubuntu14.04(16.04)_厦大数据库实验室博客

总结:

  • Hadoop默认模式为非分布式模式(本地模式),即单Java进程,无需进行其他配置即可运行
  • Hadoop可以在单节点上以伪分布式的方式运行,Hadoop进程以分离的Java进程来运行,节点既作为NameNode也作为DataNode,同时读取的是HDFS中的文件
  • 运行Hadoop程序时,为了防止覆盖结果,程序指定的输出目录(如output)不能存在,否则会提示错误,因此运行前需要先删除输出目录(如hdfs dfs -rm -r output)
  • 三种shell命令方式:
    • hadoop fs:适用于任何不同的文件系统,比如本地文件系统和HDFS文件系统
    • hadoop dfs:只能适用于HDFS文件系统
    • hdfs dfs:只能适用于HDFS文件系统
  • 若要关闭Hadoop,运行stop-dfs.sh;下次启动Hadoop,无需进行NameNode初始化,只需运行start-dfs.sh(仅仅启动了MapReduce环境,没有启动YARN)
  • 通过hdfs命令可以访问HDFS的内容

http://localhost:50070/dfshealth.html#tab-overview

06df2537ed9642c5ad52365be3103180.png

YARN(Yet Another Resource Negotiator)是从MapReduce中分离出来的,负责资源管理与任务调度。YARN运行于MapReduce之上,提供了高可用性、高扩展性

启动YARN之后,运行实例的方法还是一样的,仅仅是资源管理方式、任务调度不同。观察日志信息可以发现,不启用YARN时,是 "mapred.LocalJobRunner" 在跑任务;启用YARN之后,是 "mapred.YARNRunner" 在跑任务。启动YARN有个好处是可以通过Web界面查看任务的运行情况:http://localhost:8088/cluster 

b17fca2df84c4eebaa8e0d9d9bd1f62c.png

启动/关闭YARN的脚本:

start-yarn.sh      # 启动YARN
mr-jobhistory-daemon.sh start historyserver  # 开启历史服务器,才能在Web中查看任务运行情况stop-yarn.sh
mr-jobhistory-daemon.sh stop historyserver

如果需要安装Hadoop集群,参考Hadoop 2.7分布式集群环境搭建_厦大数据库实验室博客


(四)Spark 2.4.0(Local模式)

Apache Spark是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark最大的特点就是快,可比Hadoop MapReduce的处理速度快100倍 

Spark采用Local模式进行安装,也就是在单机上运行Spark。因此,在安装Hadoop时,需要按照伪分布式模式进行安装。在单台机器上按照“Hadoop(伪分布式)+Spark(Local模式)”这种方式进行Hadoop和Spark组合环境的搭建,可以较好满足入门级Spark学习的需求 

Index of /dist/spark/spark-2.4.0

a3f5927cf3b248d996a72d1c185b7d53.png

参考以下链接中 “安装Spark(Local模式)” 部分即可(这篇帖子是Spark 3.4.0,但原理相同):Spark安装和编程实践(Spark3.4.0)_厦大数据库实验室博客

cd /usr/local/spark
bin/spark-shell

Spark Shell界面如下,不过是以Scala为交互语言(Ctrl+c退出): 

089d9ab492d5489e95a481aee1c5ad71.png

进入Pyspark:

cd /usr/local/spark
./bin/pyspark

a1250359a1bd4952bee8fed2625136c1.png

总结:

  • bash和shell的区别:
    • shell:负责人机交互的一种抽象,接收用户输入交给内核,内核执行完后返回给用户。有多种实现,sh/bash/csh/ksh/ash,当前用户登录后操作系统会用哪种shell,是由配置文件中对应用户的配置来决定的,可由echo $SHELL查看
    • bash:shell的一种实现(/bin/bash)。用户远程连接后,操作系统会默认生成一个bash进程

9c2695f5ea0d427b925753a28a86266d.png


(五)PyCharm 

Download PyCharm: Python IDE for Professional Developers by JetBrains

5824aee2c55d4ef6b135947c38b1700d.png

安装参考:使用Pycharm开发Spark应用程序(以WordCount为例)_厦大数据库实验室博客 以及

第一章 python分布式爬虫打造搜索引擎环境搭建 第一节 CentOS7环境下pycharm的安装和使用_Demon丶冷漠的博客-CSDN博客

安装过程中我遇到一个报错如下: 

bff35e98966345c5a0a08e0a05aaac58.png

解决方法是新开一个terminal再执行命令,参考linux安装pycharm报错:Unable to detect graphics environment_pycharm unable to detect graphics environment_我有明珠一颗的博客-CSDN博客

编辑hosts文件时遇到以下两个问题,原因是权限不足: 

vim 修改文件出现错误 “ E45: ‘readonly’ option is set (add to override)“_大红烧肉的博客-CSDN博客

Linux使用vi编辑文件报错:E212: Can‘t open file for writing Press ENTER or type command to continue_/ect/hosts" e212: can't open file for writing_凝眸伏笔的博客-CSDN博客


(六)案例(以WordCount为例)

参考:使用Pycharm开发Spark应用程序(以WordCount为例)_厦大数据库实验室博客 

启动pycharm:

e8e4aa5b7875412080310fa2f537c8b4.png

创建文件夹(注意Base interpreter选择的是 /usr/bin/python3.5): 

13a28c4196f14a4c99b40216a7b124fe.png

上传word.txt文件(本地地址为/home/hadoop/Downloads/word.txt)至HDFS(创建一个文件夹aaa,上传至aaa文件夹下)

hadoop fs -ls   # 查看hdfs下的文件
hdfs dfs -mkdir /aaa   # 创建一个目录aaa
hdfs dfs -put /home/hadoop/Downloads/word.txt /aaa   # 上传word.txt文件至aaa文件夹下
hadoop fs -ls /aaa   # 检查是否上传成功# 三种shell命令方式:
# hadoop fs:适用于任何不同的文件系统,比如本地文件系统和HDFS文件系统
# hadoop dfs:只能适用于HDFS文件系统
# hdfs dfs:只能适用于HDFS文件系统

打开HDFS:

b6a26266279e46ec95ef2ddda28a916d.png

关于HDFS的一些操作可以参考:如何上传文件到hdfs?_数据上传至hdfs://crash目录下_你看这人,真菜的博客-CSDN博客 

WordCount.py代码如下:

# -*- coding:utf8-*-
# 安装pyspark:在终端输入pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pysparkimport os
os.environ['PYSPARK_PYTHON'] = '/usr/bin/python3.5'   # python解释器路径import findspark
findspark.init()from pyspark import SparkConf, SparkContextconf = SparkConf().setAppName("WordCount").setMaster("local")
sc = SparkContext(conf=conf)
inputFile = "hdfs://localhost:9000/aaa/word.txt"   # 文件放在hdfs伪分布式文件系统上(必须开启hdfs文件系统)
textFile = sc.textFile(inputFile)
wordCount = textFile.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).reduceByKey(lambda a, b: a + b)
wordCount.foreach(print)
  • flatMap:将文件按空格进行拍扁 
  • map:将拍扁后的一个个单词分别映射成 (word, 1) 的形式
  • reduceByKey:将map输出中key相同的值加起来
  • foreach:循环遍历打印输出结果

ae19d656434f47d8802bf25e39d7cfce.png

(1)右键运行。运行结果如下:

79e29195300e4cada1b244e57d0c9fb2.png

(2)也可以把代码提交到Spark运行。在终端运行:

cd /usr/local/spark/
./bin/spark-submit /home/hadoop/PycharmProjects/WordCount/WordCount.py

翻一下我们的输出信息可以找到结果: 

2a15b8f492b54226b8997f04d5038a3c.png

注:Spark & PySpark 的执行可以特别详细,很多INFO日志消息都会打印到屏幕。开发过程中,这非常恼人,因为可能丢失Python栈跟踪或者print的输出。为了减少Spark输出,可以设置$SPARK_HOME/conf 下的log4j

cd /usr/local/spark/conf
cp log4j.properties.template log4j.properties
vim log4j.properties

将 log4j.rootCategory=INFO, console 中的 INFO 改为 WARN 或者 ERROR,保存退出,如下图: 

2c4f198f1a5c4fbd900ab3c6e38398db.png

再运行,输出结果就一目了然了: 

52613af14e88400e977923684c4bc3f9.png

更多案例参考:

基于Python语言的Spark数据处理分析案例集锦(PySpark)_厦大数据库实验室博客

更多大数据相关博客:大数据_厦大数据库实验室博客 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/82429.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue直接使用高德api

第一步&#xff1a;在index.html 引入 <script src"https://webapi.amap.com/maps?v2.0&key你的key"></script>第二步&#xff1a;在你需要地图的时候 放入 <template><div style"width: 200px; height: 200px"><div id&q…

Java可视化物联网智慧工地SaaS平台源码:人脸识别考勤

基于微服务JavaSpring Cloud Vue UniApp MySql实现的智慧工地云平台源码 智慧工地是指利用云计算、大数据、物联网、移动互联网、人工智能等技术手段&#xff0c;为建筑施工现场提供智能硬件及物联网平台的解决方案&#xff0c;以实现建筑工地的实时化、可视化、多元化、智慧化…

【2023钉钉杯复赛】A题 智能手机用户监测数据分析 Python代码分析

【2023钉钉杯复赛】A题 智能手机用户监测数据分析 Python代码分析 1 题目 一、问题背景 近年来&#xff0c;随着智能手机的产生&#xff0c;发展到爆炸式的普及增长&#xff0c;不仅推动了中 国智能手机市场的发展和扩大&#xff0c;还快速的促进手机软件的开发。近年中国智能…

uni-app 打包生成签名Sha1

Android平台打包发布apk应用&#xff0c;需要使用数字证书&#xff08;.keystore文件&#xff09;进行签名&#xff0c;用于表明开发者身份。 可以使用JRE环境中的keytool命令生成。以下是windows平台生成证书的方法&#xff1a; 安装JRE环境&#xff08;推荐使用JRE8环境&am…

UWB高精度人员定位系统源码,微服务+java+ spring boot+ vue+ mysql技术开发

工业物联网感知预警体系&#xff0c;大中小企业工业数字化转型需求的工业互联网平台 工厂人员定位系统是指能够对工厂中的人员、车辆、设备等进行定位&#xff0c;实现对人员和车辆的实时监控与调度的系统&#xff0c;是智慧工厂建设中必不可少的一环。由于工厂的工作环境比较…

Vue实现父子组件相互传值

在Vue中&#xff0c;父组件可以通过以下几种方式获取子组件传递的值&#xff1a; 1.Props&#xff08;属性&#xff09;&#xff1a;父组件通过在子组件上定义属性&#xff08;props&#xff09;&#xff0c;将数据传递给子组件。子组件在使用props接收数据后&#xff0c;父组…

昌硕科技、世硕电子同步上线法大大电子合同

近日&#xff0c;世界500强企业和硕联合旗下上海昌硕科技有限公司&#xff08;以下简称“昌硕科技”&#xff09;、世硕电子&#xff08;昆山&#xff09;有限公司&#xff08;以下简称“世硕电子”&#xff09;的电子签项目正式上线。上线仪式在上海浦东和硕集团科研大楼举行&…

让大数据平台数据安全可见-行云管家

数字化经济在快速发展&#xff0c;大数据时代已经到来&#xff0c;大数据已经成为企业和政府决策的重要依据。然而大数据行业快速发展所带来的一系列安全问题也继续解决&#xff0c;例如数据安全更难保障&#xff0c;例如认证体系不完善等等。为此行云管家推出了大数据平台数据…

AI 时代,程序员无需焦虑

作者简介&#xff1a; 辭七七&#xff0c;目前大一&#xff0c;正在学习C/C&#xff0c;Java&#xff0c;Python等 作者主页&#xff1a; 七七的个人主页 文章收录专栏&#xff1a; 七七的闲谈 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01;&#x1f496;&#x1f…

巴别塔再现?高质量端到端数据助力Meta推出AI模型SeamlessM4T

追求卓越与无限的精神一直流淌在人类的基因里。圣经中有故事&#xff1a;在古代&#xff0c;人们说着同一种语言&#xff0c;决定建造一座高耸入云&#xff0c;塔顶能触及天堂的塔&#xff0c;被称为巴别塔&#xff0c;以彰显人类的力量和创造力。然而上帝看到人类的意图&#…

MyBatis的核心技术掌握,简单易懂(上)

目录 一.MyBatis中的动态SQL 二.MyBatis中的模糊查询 1. # 符号 2. $ 符号 ---问题 ---所以大家知道 # 和 $ 在MyBatis中的模糊查询中的区别了嘛&#xff1f;&#xff1f; 三.MyBatis 中的结果映射 1. resultType&#xff1a; 2. resultMap&#xff1a; ---问题 ---…

基于spring boot校园疫情信息管理系统/疫情管理系统

摘要 随着计算机技术&#xff0c;网络技术的迅猛发展&#xff0c;Internet 的不断普及&#xff0c;网络在各个领域里发挥了越来越重要的作用。特别是随着近年人民生活水平不断提高&#xff0c;校园疫情信息管理系统给学校带来了更大的帮助。 由于当前疫情防控形势复杂&#xff…