LLMs参考资料第一周以及BloombergGPT特定领域的训练 Domain-specific training: BloombergGPT

1. 第1周资源

以下是本周视频中讨论的研究论文的链接。您不需要理解这些论文中讨论的所有技术细节 - 您已经看到了您需要回答讲座视频中的测验的最重要的要点。

然而,如果您想更仔细地查看原始研究,您可以通过以下链接阅读这些论文和文章。

1.1 Transformer架构

  • 注意力就是你需要的 《Attention is All You Need》
  • 本文介绍了Transformer架构,以及核心的“自注意力”机制。这篇文章是LLMs的基础。
  • BLOOM:BigScience 176B模型《BLOOM: BigScience 176B Model 》
  • BLOOM是一个开源的LLM,拥有176B的参数(类似于GPT-4),以开放透明的方式进行训练。在这篇论文中,作者详细讨论了用于训练模型的数据集和过程。您还可以在这里查看模型的高级概述。
  • 向量空间模型 《Vector Space Models》
  • DeepLearning.AI的自然语言处理专项课程系列课程,讨论了向量空间模型的基础及其在语言建模中的应用。

1.2 预训练和缩放法则

  • 神经语言模型的缩放法则《Scaling Laws for Neural Language Models》
  • OpenAI的研究人员进行的实证研究,探索了大型语言模型的缩放法则。

1.3 模型架构和预训练目标

  • 什么语言模型架构和预训练目标最适合Zero-shot泛化?《What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?》
  • 本文研究了大型预训练语言模型中的建模选择,并确定了零射击泛化的最佳方法。
  • HuggingFace Tasks 和 Model Hub
  • 使用HuggingFace库处理各种机器学习任务的资源集合。
  • LLaMA:开放和高效的基础语言模型《LLaMA: Open and Efficient Foundation Language Models》
  • Meta AI提出的高效LLMs文章(他们的13 Billion模型在大多数基准测试上的性能超过了拥有175Billion参数的GPT3)

1.4 缩放法则和计算最佳模型

  • 语言模型是少射击学习者《Language Models are Few-Shot Learners》
  • 本文研究了大型语言模型中少射击学习的潜力。
  • 训练计算最佳大型语言模型 《Training Compute-Optimal Large Language Models》
  • DeepMind的研究,评估训练LLMs的最佳模型大小和令牌数量。也被称为“Chinchilla论文”。
  • BloombergGPT:金融领域的大型语言模型 《BloombergGPT: A Large Language Model for Finance》
  • 专门为金融领域训练的LLM,是一个试图遵循chinchilla法则的好例子。

2. BloombergGPT

在这里插入图片描述

在这里插入图片描述
BloombergGPT是由Bloomberg开发的大型仅解码器语言模型。它使用了包括新闻文章、报告和市场数据在内的广泛金融数据集进行预训练,以增强其对金融的理解,并使其能够生成与金融相关的自然语言文本。数据集在上面的图片中显示。

在BloombergGPT的训练过程中,作者使用了Chinchilla缩放法则来指导模型中的参数数量和训练数据的量,以令牌为单位进行测量。Chinchilla的建议由图片中的Chinchilla-1、Chinchilla-2和Chinchilla-3线表示,我们可以看到BloombergGPT与其非常接近。

尽管团队可用的训练计算预算的推荐配置是500亿参数和1.4万亿令牌,但在金融领域获得1.4万亿令牌的训练数据证明是具有挑战性的。因此,他们构建了一个只包含7000亿令牌的数据集,少于计算最佳值。此外,由于提前停止,训练过程在处理5690亿令牌后终止。

BloombergGPT项目是一个很好的例子,说明了如何为增加领域特异性进行模型预训练,以及可能迫使您在计算最佳模型和训练配置之间做出权衡的挑战。

您可以在这里阅读BloombergGPT的文章。

参考

  • https://www.coursera.org/learn/generative-ai-with-llms/supplement/Adylf/domain-specific-training-bloomberggpt
  • https://www.coursera.org/learn/generative-ai-with-llms/supplement/kRX5c/week-1-resources

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/82446.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

scope测试CAN物理层

应用范围 测试CAN物理层:bus显性位电平、隐性位电平、bit长度、波特率等 要点 接线 sync同步线scope的trigger线,需要连到报文所在的bus/通道的那个CAN设备(vector)上,如可以连到VN1640的sync三点端子口&#xff0…

[JavaWeb]【十二】web后端开发-事务管理AOP

目录 一、事务管理 1.1 事务回顾 1.2 Spring事务管理 1.2.1 案例 1.2.1.1 EmpMapper新增deleteByDeptId方法 1.2.1.2 DeptServiceImpl 1.2.1.3 启动服务-测试 1.2.2 模拟异常 1.2.3 分析问题 1.2.4 Spring事务管理(一般用在类似多次delete) 1.2.4…

微信小程序|步骤条

步骤条是现代用户界面设计中常见的元素之一,它能够引导用户按照预定顺序完成一系列任务或步骤。在小程序中,实现步骤条可以为用户提供更好的导航和引导,使用户体验更加流畅和直观。本文将介绍如何在小程序中实现步骤条,并逐步展示实现的过程和关键技巧 目录 步骤条的作用及…

MQTT 常用客户端库介绍 (全面涵盖c,c++,java,c#,python)

MQTT(Message Queuing Telemetry Transport)是一种轻量级的通信协议,被广泛应用于物联网和分布式系统中。它以其简单、可靠和高效的特性而备受推崇,成为连接设备和应用程序的首选协议。MQTT的重要性不言而喻,它为实时通…

【Java转Go】快速上手学习笔记(六)之网络编程篇一

目录 TCP一个简单案例server.go 服务端client.go 客户端 HTTPserver.go 服务端client.go 客户端 RPC一个很简单的示例server.go 服务端client.go 客户端 WebSocketserver.go 服务端client.go 客户端 完整代码server.go 服务端client.go 客户端 go往期文章笔记: 【J…

实现高效消息传递:使用RabbitMQ构建可复用的企业级消息系统

文章目录 前言1.安装erlang 语言2.安装rabbitMQ3. 内网穿透3.1 安装cpolar内网穿透(支持一键自动安装脚本)3.2 创建HTTP隧道 4. 公网远程连接5.固定公网TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 RabbitMQ是一个在 AMQP(高级消息队列协议)基…

Confluent kafka 异常退出rd_tmpabuf_alloc0: rd kafka topic info_new_with_rack

rd_tmpabuf_alloc0: rd kafka topic info_new_with_rack 根据网上的例子,做了一个测试程序。 C# 操作Kafka_c# kafka_Riven Chen的博客-CSDN博客 但是执行下面一行时,弹出上面的异常,闪退。 consumer.Subscribe(queueName) 解决方案&…

怎么把PDF转成Word?需要注意什么事项?

PDF是一种常见的文档格式,但是与Word文档不同,PDF文件通常不能直接编辑。如果您想编辑PDF文件中的文本,或者想将PDF文件转换为Word文档,下面我们就来看一看把PDF转成Word有哪些方法和注意事项。 PDF转Word工具 有许多将PDF转换为…

睿趣科技:抖音开网店要怎么找货源

在当今数字化的时代,电商平台的兴起为越来越多的人提供了开设网店的机会,而抖音作为一个充满活力的短视频平台,也为创业者提供了广阔的发展空间。然而,对于许多初次涉足电商领域的人来说,找到合适的货源却是一个重要的…

uniapp接入广告的问题总结

Uniapp官方解决方案 uni-app 支持接入uni-ad广告联盟,开发者可实现一次开发,多端变现。 uni-ad 支持开屏、信息流、激励视频、视频流、悬浮红包、推送等丰富的广告形式; uni-ad 聚合了全网所有主流广告源,包括腾讯优量汇、字节…

PySpark安装及WordCount实现(基于Ubuntu)

先盘点一下要安装哪些东西: VMwareubuntu 14.04(64位)Java环境(JDK 1.8)Hadoop 2.7.1Spark 2.4.0(Local模式)Pycharm (一)Ubuntu VMware 和 ubuntu 14.04(…

vue直接使用高德api

第一步&#xff1a;在index.html 引入 <script src"https://webapi.amap.com/maps?v2.0&key你的key"></script>第二步&#xff1a;在你需要地图的时候 放入 <template><div style"width: 200px; height: 200px"><div id&q…