GPU 环境搭建指南:如何在裸机、Docker、K8s 等环境中使用 GPU

news/2024/11/7 8:46:20/文章来源:https://www.cnblogs.com/KubeExplorer/p/18531449

how-to-use-gpu

本文主要分享在不同环境,例如裸机、Docker 和 Kubernetes 等环境中如何使用 GPU。

跳转阅读原文:GPU 环境搭建指南:如何在裸机、Docker、K8s 等环境中使用 GPU

1. 概述

仅以比较常见的 NVIDIA GPU 举例,系统为 Linux,对于其他厂家的 GPU 设备理论上流程都是一样的。


省流:

  • 对于裸机环境,只需要安装对应的 GPU Driver 以及 CUDA Toolkit 。

  • 对应 Docker 环境,需要额外安装 nvidia-container-toolkit 并配置 docker 使用 nvidia runtime。

  • 对应 k8s 环境,需要额外安装对应的 device-plugin 使得 kubelet 能够感知到节点上的 GPU 设备,以便 k8s 能够进行 GPU 管理。

注:一般在 k8s 中使用都会直接使用 gpu-operator 方式进行安装,本文主要为了搞清各个组件的作用,因此进行手动安装。

ps;下一篇分享下如何使用 gpu-operator 快速完成安装

2. 裸机环境

裸机中要使用上 GPU 需要安装以下组件:

  • GPU Driver
  • CUDA Toolkit

二者的关系如 NVIDIA 官网上的这个图所示:

components-of-cuda

GPU Driver 包括了 GPU 驱动和 CUDA 驱动,CUDA Toolkit 则包含了 CUDA Runtime。

GPU 作为一个 PCIE 设备,只要安装好之后,在系统中就可以通过 lspci 命令查看到,先确认机器上是否有 GPU:

root@test:~# lspci|grep NVIDIA
3b:00.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)
86:00.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)

可以看到,该设备有两张 Tesla T4 GPU。

安装驱动

首先到 NVIDIA 驱动下载 下载对应的显卡驱动:

search-gpu-driver

最终下载得到的是一个.run 文件,例如 NVIDIA-Linux-x86_64-550.54.14.run

然后直接 sh 方式运行该文件即可

sh NVIDIA-Linux-x86_64-550.54.14.run

接下来会进入图形化界面,一路选择 yes / ok 就好

运行以下命令检查是否安装成功

nvidia-smi

如果出现显卡信息则是安装成功,就像这样:

root@test:~ nvidia-smi
Wed Jul 10 05:41:52 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.161.08             Driver Version: 535.161.08   CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  Tesla T4                       On  | 00000000:3B:00.0 Off |                    0 |
| N/A   51C    P0              29W /  70W |  12233MiB / 15360MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   1  Tesla T4                       On  | 00000000:86:00.0 Off |                    0 |
| N/A   49C    P0              30W /  70W |   6017MiB / 15360MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------++---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|   
+---------------------------------------------------------------------------------------+

至此,我们就安装好 GPU 驱动了,系统也能正常识别到 GPU。

这里显示的 CUDA 版本表示当前驱动最大支持的 CUDA 版本。

安装 CUDA Toolkit

对于深度学习程序,一般都要依赖 CUDA 环境,因此需要在机器上安装 CUDA Toolkit

也是到 NVIDIA CUDA Toolkit 下载 下载对应的安装包,选择操作系统和安装方式即可

download-cuda-toolkit

和安装驱动类似,也是一个 .run 文件

# 下载安装文件
wget https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run# 开始安装
sudo sh cuda_12.2.0_535.54.03_linux.run

注意:之前安装过驱动了,这里就不再安装驱动,仅安装 CUDA Toolkit 相关组件

安装完成后输出如下:

root@iZbp15lv2der847tlwkkd3Z:~# sudo sh cuda_12.2.0_535.54.03_linux.run
===========
= Summary =
===========Driver:   Installed
Toolkit:  Installed in /usr/local/cuda-12.2/Please make sure that-   PATH includes /usr/local/cuda-12.2/bin-   LD_LIBRARY_PATH includes /usr/local/cuda-12.2/lib64, or, add /usr/local/cuda-12.2/lib64 to /etc/ld.so.conf and run ldconfig as rootTo uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-12.2/bin
To uninstall the NVIDIA Driver, run nvidia-uninstall
Logfile is /var/log/cuda-installer.log

根据提示配置下 PATH

# 添加 CUDA 12.2 到 PATH
export PATH=/usr/local/cuda-12.2/bin:$PATH# 添加 CUDA 12.2 的 lib64 到 LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64:$LD_LIBRARY_PATH

执行以下命令查看版本,确认安装成功

root@iZbp15lv2der847tlwkkd3Z:~# nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Jun_13_19:16:58_PDT_2023
Cuda compilation tools, release 12.2, V12.2.91
Build cuda_12.2.r12.2/compiler.32965470_0

测试

我们使用一个简单的 Pytorch 程序来检测 GPU 和 CUDA 是否正常。

整个调用链大概是这样的:

cuda-call-flow

使用下面代码来测试能够正常使用, check_cuda_pytorch.py 内容如下:

import torchdef check_cuda_with_pytorch():"""检查 PyTorch CUDA 环境是否正常工作"""try:print("检查 PyTorch CUDA 环境:")if torch.cuda.is_available():print(f"CUDA 设备可用,当前 CUDA 版本是: {torch.version.cuda}")print(f"PyTorch 版本是: {torch.__version__}")print(f"检测到 {torch.cuda.device_count()} 个 CUDA 设备。")for i in range(torch.cuda.device_count()):print(f"设备 {i}: {torch.cuda.get_device_name(i)}")print(f"设备 {i} 的显存总量: {torch.cuda.get_device_properties(i).total_memory / (1024 ** 3):.2f} GB")print(f"设备 {i} 的显存当前使用量: {torch.cuda.memory_allocated(i) / (1024 ** 3):.2f} GB")print(f"设备 {i} 的显存最大使用量: {torch.cuda.memory_reserved(i) / (1024 ** 3):.2f} GB")else:print("CUDA 设备不可用。")except Exception as e:print(f"检查 PyTorch CUDA 环境时出现错误: {e}")if __name__ == "__main__":check_cuda_with_pytorch()

先安装下 torch

pip install torch

运行一下

python3 check_cuda_pytorch.py

正常输出应该是这样的:

检查 PyTorch CUDA 环境:
CUDA 设备可用,当前 CUDA 版本是: 12.1
PyTorch 版本是: 2.3.0+cu121
检测到 1 个 CUDA 设备。
设备 0: Tesla T4
设备 0 的显存总量: 14.75 GB
设备 0 的显存当前使用量: 0.00 GB
设备 0 的显存最大使用量: 0.00 GB

3. Docker 环境

上一步中我们已经在裸机上安装了 GPU Driver,CUDA Toolkit 等工具,实现了在宿主机上使用 GPU。

现在希望在 Docker 容器中使用 GPU,需要怎么处理呢?

为了让 Docker 容器中也能使用 GPU,大致步骤如下:

  • 1)安装 nvidia-container-toolkit 组件
  • 2)docker 配置使用 nvidia-runtime
  • 3)启动容器时增加 --gpu 参数

安装 nvidia-container-toolkit

NVIDIA Container Toolkit 的主要作用是将 NVIDIA GPU 设备挂载到容器中。

兼容生态系统中的任意容器运行时,docker、containerd、cri-o 等。

NVIDIA 官方安装文档:nvidia-container-toolkit-install-guide

对于 Ubuntu 系统,安装命令如下:

# 1. Configure the production repository
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list# Optionally, configure the repository to use experimental packages 
sed -i -e '/experimental/ s/^#//g' /etc/apt/sources.list.d/nvidia-container-toolkit.list# 2. Update the packages list from the repository
sudo apt-get update# 3. Install the NVIDIA Container Toolkit packages
sudo apt-get install -y nvidia-container-toolkit

配置使用该 runtime

支持 Docker, Containerd, CRI-O, Podman 等 CRI。

具体见官方文档 container-toolkit#install-guide

这里以 Docker 为例进行配置:

旧版本需要手动在 /etc/docker/daemon.json 中增加配置,指定使用 nvidia 的 runtime。

    "runtimes": {"nvidia": {"args": [],"path": "nvidia-container-runtime"}}

新版 toolkit 带了一个nvidia-ctk 工具,执行以下命令即可一键配置:

sudo nvidia-ctk runtime configure --runtime=docker

然后重启 Docker 即可

sudo systemctl restart docker

测试

安装nvidia-container-toolkit 后,整个调用链如下:

nv-container-runtime-call-flow

调用链从 containerd --> runC 变成 containerd --> nvidia-container-runtime --> runC 。

然后 nvidia-container-runtime 在中间拦截了容器 spec,就可以把 gpu 相关配置添加进去,再传给 runC 的 spec 里面就包含 gpu 信息了。

Docker 环境中的 CUDA 调用大概是这样的:

cuda-call-in-container.png

从图中可以看到,CUDA Toolkit 跑到容器里了,因此宿主机上不需要再安装 CUDA Toolkit。

使用一个带 CUDA Toolkit 的镜像即可。

最后我们启动一个 Docker 容器进行测试,其中命令中增加 --gpu 参数来指定要分配给容器的 GPU。

--gpu 参数可选值:

  • --gpus all:表示将所有 GPU 都分配给该容器
  • --gpus "device=<id>[,<id>...]":对于多 GPU 场景,可以通过 id 指定分配给容器的 GPU,例如 --gpu "device=0" 表示只分配 0 号 GPU 给该容器
    • GPU 编号则是通过nvidia-smi 命令进行查看

这里我们直接使用一个带 cuda 的镜像来测试,启动该容器并执行nvidia-smi 命令

docker run --rm --gpus all  nvidia/cuda:12.0.1-runtime-ubuntu22.04 nvidia-smi

正常情况下应该是可以打印出容器中的 GPU 信息的。

4. k8s 环境

更进一步,在 k8s 环境中使用 GPU,则需要在集群中部署以下组件:

  • gpu-device-plugin 用于管理 GPU,device-plugin 以 DaemonSet 方式运行到集群各个节点,以感知节点上的 GPU 设备,从而让 k8s 能够对节点上的 GPU 设备进行管理。
  • gpu-exporter:用于监控 GPU

各组件关系如下图所示:

k8s-gpu-manual-instll-vs-gpu-operator

  • 左图为手动安装的场景,只需要在集群中安装 device-plugin 和 监控即可使用。

  • 右图为使用 gpu-operotar 安装场景,本篇暂时忽略

大致工作流程如下:

  • 每个节点的 kubelet 组件维护该节点的 GPU 设备状态(哪些已用,哪些未用)并定时报告给调度器,调度器知道每一个节点有多少张 GPU 卡可用。
  • 调度器为 pod 选择节点时,从符合条件的节点中选择一个节点。
  • 当 pod 调度到节点上后,kubelet 组件为 pod 分配 GPU 设备 ID,并将这些 ID 作为参数传递给 NVIDIA Device Plugin
  • NVIDIA Device Plugin 将分配给该 pod 的容器的 GPU 设备 ID 写入到容器的环境变量 NVIDIA_VISIBLE_DEVICES中,然后将信息返回给 kubelet。
  • kubelet 启动容器。
  • NVIDIA Container Toolkit 检测容器的 spec 中存在环境变量 NVIDIA_VISIBLE_DEVICES,然后根据环境变量的值将 GPU 设备挂载到容器中。

在 Docker 环境我们在启动容器时通过 --gpu 参数手动指定分配给容器的 GPU,k8s 环境则由 device-plugin 自行管理。

安装 device-plugin

device-plugin 一般由对应的 GPU 厂家提供,比如 NVIDIA 的 k8s-device-plugin

安装其实很简单,将对应的 yaml apply 到集群即可。

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.15.0/deployments/static/nvidia-device-plugin.yml

就像这样

root@test:~# kgo get po -l app=nvidia-device-plugin-daemonset
NAME                                   READY   STATUS    RESTARTS   AGE
nvidia-device-plugin-daemonset-7nkjw   1/1     Running   0          10m

device-plugin 启动之后,会感知节点上的 GPU 设备并上报给 kubelet,最终由 kubelet 提交到 kube-apiserver。

因此我们可以在 Node 可分配资源中看到 GPU,就像这样:

root@test:~# k describe node test|grep Capacity -A7
Capacity:cpu:                48ephemeral-storage:  460364840Kihugepages-1Gi:      0hugepages-2Mi:      0memory:             98260824Kinvidia.com/gpu:     2pods:               110

可以看到,除了常见的 cpu、memory 之外,还有nvidia.com/gpu, 这个就是 GPU 资源,数量为 2 说明我们有两张 GPU。

安装 GPU 监控

除此之外,如果你需要监控集群 GPU 资源使用情况,你可能还需要安装 DCCM exporter 结合 Prometheus 输出 GPU 资源监控信息。

helm repo add gpu-helm-charts \https://nvidia.github.io/dcgm-exporter/helm-chartshelm repo updatehelm install \--generate-name \gpu-helm-charts/dcgm-exporter

查看 metrics

curl -sL http://127.0.0.1:8080/metrics
# HELP DCGM_FI_DEV_SM_CLOCK SM clock frequency (in MHz).# TYPE DCGM_FI_DEV_SM_CLOCK gauge# HELP DCGM_FI_DEV_MEM_CLOCK Memory clock frequency (in MHz).# TYPE DCGM_FI_DEV_MEM_CLOCK gauge# HELP DCGM_FI_DEV_MEMORY_TEMP Memory temperature (in C).# TYPE DCGM_FI_DEV_MEMORY_TEMP gauge
...
DCGM_FI_DEV_SM_CLOCK{gpu="0", UUID="GPU-604ac76c-d9cf-fef3-62e9-d92044ab6e52",container="",namespace="",pod=""} 139
DCGM_FI_DEV_MEM_CLOCK{gpu="0", UUID="GPU-604ac76c-d9cf-fef3-62e9-d92044ab6e52",container="",namespace="",pod=""} 405
DCGM_FI_DEV_MEMORY_TEMP{gpu="0", UUID="GPU-604ac76c-d9cf-fef3-62e9-d92044ab6e52",container="",namespace="",pod=""} 9223372036854775794
...

测试

在 k8s 创建 Pod 要使用 GPU 资源很简单,和 cpu、memory 等常规资源一样,在 resource 中 申请即可。

比如,下面这个 yaml 里面我们就通过 resource.limits 申请了该 Pod 要使用 1 个 GPU。

apiVersion: v1
kind: Pod
metadata:name: gpu-pod
spec:restartPolicy: Nevercontainers:- name: cuda-containerimage: nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda10.2resources:limits:nvidia.com/gpu: 1 # requesting 1 GPU

这样 kueb-scheduler 在调度该 Pod 时就会考虑到这个情况,将其调度到有 GPU 资源的节点。

启动后,查看日志,正常应该会打印 测试通过的信息。

kubectl logs gpu-pod
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done

至此,在 k8s 环境中也可以使用 GPU 了。


【Kubernetes 系列】持续更新中,搜索公众号【探索云原生】订阅,阅读更多文章。


5. 小结

本文主要分享了在裸机、Docker 环境、k8s 环境中如何使用 GPU。

  • 对于裸机环境,只需要安装对应的 GPU Driver 即可。

  • 对应 Docker 环境,需要额外安装 nvidia-container-toolkit 并配置 docker 使用 nvidia runtime。

  • 对应 k8s 环境,需要额外安装对应的 device-plugin 使得 kubelet 能够感知到节点上的 GPU 设备,以便 k8s 能够进行 GPU 管理。

现在一般都是在 k8s 环境中使用,为了简化安装步骤, NVIDIA 也提供了 gpu-operator来简化安装部署,后续分享一下如何使用 gpu-operator 来快速安装。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/828151.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

橡胶

关键节点。 下破3-4的节点 可能预示着只是个ABC反弹。且反弹结束。如果再向上突破18210则很可能17465就是这个中期底部。

一起了解早期使用的各种垃圾收集器

以上是 HotSpot 虚拟机中的 7 个垃圾收集器,连线表示垃圾收集器可以配合使用。 并行收集: 指多条垃圾收集线程并行工作,但此时用户线程仍处于等待状态。 并发收集: 指用户线程与垃圾收集线程同时工作(不一定是并行的可能会交替执行)。用户程序在继续运行,而垃圾收集程序…

F5 BIG-IP Next SSL Orchestrator 20.3.0 发布下载,新增功能介绍

F5 BIG-IP Next SSL Orchestrator 20.3.0 发布下载,新增功能介绍F5 BIG-IP Next 20.3.0 - 多云安全和应用交付 BIG-IP 是硬件平台和软件解决方案的集合,提供专注于安全性、可靠性和性能的服务 请访问原文链接:https://sysin.org/blog/f5-big-ip-next/ 查看最新版。原创作品,…

2024-11--6

DQL语句 分组查询排序查询分页查询dql语句执行顺序

读数据工程之道:设计和构建健壮的数据系统30机器学习

机器学习1. 机器学习 1.1. 机器学习正在变得普遍1.1.1. 机器学习、数据科学、数据工程以及机器学习工程的界限正在变得模糊,并且在各个组织内部都形态各异1.2. 现状1.2.1. 某些组织中,机器学习工程师负责处理为机器学习应用程序处理收集到的数据,有时甚至会形成独立且平行工…

【网络知识系列】抓包带你深入了解网关到底起什么样的作用?不同网段通信的过程详解

以下文章来源于网络之路博客 ,作者网络之路作者一天 不同网段通信的过程 不同网段就分两种了,同一个局域网下面,不同网段之间的通信,或者是从局域网去往互联网的通信,那么这个过程又是怎么样的呢?还记得第二篇这个内容吗,访问者把数据交给网关,当时候是没有讲解这个里面…

数据结构__链表_单链表的初始化、插入、删除、修改、查询打印(基于C语言实现)

一、链表的原理与应用 对于顺序表的数据增加和删除是比较麻烦,因为都需要移动一片连续的内存。 顺序表的优点是:由于顺序表数据元素的内存地址都是连续的,所以可以实现随机访问,而且不需要多余的信息来描述相关的数据,所以存储密度高。 顺序表的缺点是:顺序表的数据在进行…

【java开发】gitee变成maven私库

原创 晓华WarmFlow warm-flow工作流1、背景 当由于各种原因,比如网络、想控制谁有权限访问类库或者公司没有服务器作为私库等,可以采用此法。 2、Gitee建新的仓库 我的仓库地址:https://gitee.com/min290/warm-flow-repo.git 2.1 首先要建立仓库2.2 仓库选择开源,否则无法下…

【Proxychains】详解

原创 无问之路 巢安实验室免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,文章作者不为此承担任何责任。简介 ProxyChains是Linux和其他Unix下的代理工具。它可以使任何程序通过代理上网, 允许TCP和DNS通过代理隧道。Pro…

[hgame 2023]vm

--这是我的第一个博客--如有错误希望大佬能指出---进来之后看到第8行和第12行有不知道的函数,分别是sub_140001000,sub_1400010B0。 进入第8行的sub_140001000看看。再进入sub_140001060。会发现初始化了一些以a1为基地址的数据。 vm逆向,即虚拟机逆向。这里的虚拟机类似jav…

【windows应用】命令行禁用、启用Windows系统代理

原创 hyang0 生有可恋Windows 系统代理可以通过窗口鼠标点击开关进行配置,当需要频繁切换代理和非代理状态时命令行操作会更方便。系统代理是通过注册表进行控制的,可以通过操作注册表项来控制系统代理的禁用或启用: # 禁用: reg add "HKEY_CURRENT_USER\SOFTWARE\Mic…