零拷贝详解

目录

一、什么是零拷贝

二、传统的IO执行流程

三、零拷贝相关的知识点回顾

1、内核空间&用户空间

2、用户态&内核态

3、上下文切换

4、虚拟内存

5、DMA技术

四、零拷贝实现的几种方式

1、mmap+write实现的零拷贝

2、sendfile实现的零拷贝

3、sendfile+DMA scatter/gather实现的零拷贝

五、java提供的零拷贝方式

1、Java NIO对mmap的支持

2、Java NIO对sendfile的支持


一、什么是零拷贝

零拷贝字面上的意思包括两个,“零”和“拷贝”:

  • “拷贝”:就是指数据从一个存储区域转移到另一个存储区域。
  • “零” :表示次数为0,它表示拷贝数据的次数为0。

零拷贝指在进行数据 IO 时,数据在用户态下经历了零次 CPU 拷贝,并非不拷贝数据。通过减少数据传输过程中 内核缓冲区和用户进程缓冲区 间不必要的CPU数据拷贝 与 用户态和内核态的上下文切换次数,降低 CPU 在这两方面的开销,释放 CPU 执行其他任务,更有效的利用系统资源,提高传输效率,同时还减少了内存的占用,也提升应用程序的性能。

        由于零拷贝在内核空间中完成所有的内存拷贝,可以最大化使用 socket 缓冲区的可用空间,从而提高了一次系统调用中处理的数据量,进一步降低了上下文切换次数。零拷贝技术基于 PageCache,而 PageCache 缓存了最近访问过的数据,提升了访问缓存数据的性能,同时,为了解决机械磁盘寻址慢的问题,它还协助 IO 调度算法实现了 IO 合并与预读(这也是顺序读比随机读性能好的原因),这进一步提升了零拷贝的性能。

二、传统的IO执行流程

传统的IO流程,包括read和write的过程。

  • read:把数据从磁盘读取到内核缓冲区,再拷贝到用户缓冲区
  • write:先把数据写入到socket缓冲区,最后写入网卡设备。

  • 用户应用进程调用read函数,向操作系统发起IO调用,上下文从用户态转为内核态(切换1)
  • DMA控制器把数据从磁盘中,读取到内核缓冲区。
  • CPU把内核缓冲区数据,拷贝到用户应用缓冲区,上下文从内核态转为用户态(切换2),read函数返回
  • 用户应用进程通过write函数,发起IO调用,上下文从用户态转为内核态(切换3)
  • CPU将用户缓冲区中的数据,拷贝到socket缓冲区
  • DMA控制器把数据从socket缓冲区,拷贝到网卡设备,上下文从内核态切换回用户态(切换4),write函数返回

从流程图可以看出,传统IO的读写流程,包括了4次上下文切换(4次用户态和内核态的切换),4次数据拷贝(两次CPU拷贝以及两次的DMA拷贝)

三、零拷贝相关的知识点回顾

1、内核空间&用户空间

我们电脑上跑着的应用程序,其实是需要经过操作系统,才能做一些特殊操作,如磁盘文件读写、内存的读写等等。因为这些都是比较危险的操作,不可以由应用程序乱来,只能交给底层操作系统来。

因此,操作系统为每个进程都分配了内存空间,一部分是用户空间,一部分是内核空间。内核空间是操作系统内核访问的区域,是受保护的内存空间,而用户空间是用户应用程序访问的内存区域。 以32位操作系统为例,它会为每一个进程都分配了4G(2的32次方)的内存空间。

  • 内核空间:主要提供进程调度、内存分配、连接硬件资源等功能
  • 用户空间:提供给各个程序进程的空间,它不具有访问内核空间资源的权限,如果应用程序需要使用到内核空间的资源,则需要通过系统调用来完成。进程从用户空间切换到内核空间,完成相关操作后,再从内核空间切换回用户空间。

2、用户态&内核态

  • 如果进程运行于内核空间,被称为进程的内核态
  • 如果进程运行于用户空间,被称为进程的用户态。

3、上下文切换

  • 什么是CPU上下文?

CPU 寄存器,是CPU内置的容量小、但速度极快的内存。而程序计数器,则是用来存储 CPU 正在执行的指令位置、或者即将执行的下一条指令位置。它们都是 CPU 在运行任何任务前,必须的依赖环境,因此叫做CPU上下文。

  • 什么是CPU上下文切换?

它是指,先把前一个任务的CPU上下文(也就是CPU寄存器和程序计数器)保存起来,然后加载新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的新位置,运行新任务。

一般我们说的上下文切换,就是指内核(操作系统的核心)在CPU上对进程或者线程进行切换。进程从用户态到内核态的转变,需要通过系统调用来完成。系统调用的过程,会发生CPU上下文的切换。

CPU 寄存器里原来用户态的指令位置,需要先保存起来。接着,为了执行内核态代码,CPU 寄存器需要更新为内核态指令的新位置。最后才是跳转到内核态运行内核任务。

 

4、虚拟内存

现代操作系统使用虚拟内存,即虚拟地址取代物理地址,使用虚拟内存可以有2个好处:

  • 虚拟内存空间可以远远大于物理内存空间
  • 多个虚拟内存可以指向同一个物理地址

正是多个虚拟内存可以指向同一个物理地址,可以把内核空间和用户空间的虚拟地址映射到同一个物理地址,这样的话,就可以减少IO的数据拷贝次数啦,示意图如下

5、DMA技术

DMA,英文全称是Direct Memory Access,即直接内存访问。DMA本质上是一块主板上独立的芯片,允许外设设备和内存存储器之间直接进行IO数据传输,其过程不需要CPU的参与

我们一起来看下IO流程,DMA帮忙做了什么事情

  • 用户应用进程调用read函数,向操作系统发起IO调用,进入阻塞状态,等待数据返回。
  • CPU收到指令后,对DMA控制器发起指令调度。
  • DMA收到IO请求后,将请求发送给磁盘;
  • 磁盘将数据放入磁盘控制缓冲区,并通知DMA
  • DMA将数据从磁盘控制器缓冲区拷贝到内核缓冲区。
  • DMA向CPU发出数据读完的信号,把工作交换给CPU,由CPU负责将数据从内核缓冲区拷贝到用户缓冲区。
  • 用户应用进程由内核态切换回用户态,解除阻塞状态

可以发现,DMA做的事情很清晰啦,它主要就是帮忙CPU转发一下IO请求,以及拷贝数据。为什么需要它的?

主要就是效率,它帮忙CPU做事情,这时候,CPU就可以闲下来去做别的事情,提高了CPU的利用效率。大白话解释就是,CPU老哥太忙太累啦,所以他找了个小弟(名叫DMA) ,替他完成一部分的拷贝工作,这样CPU老哥就能着手去做其他事情。

四、零拷贝实现的几种方式

零拷贝并不是没有拷贝数据,而是减少用户态/内核态的切换次数以及CPU拷贝的次数。零拷贝实现有多种方式,分别是

  • mmap+write
  • sendfile
  • 带有DMA收集拷贝功能的sendfile

1、mmap+write实现的零拷贝

前面介绍了虚拟内存,可以把内核空间和用户空间的虚拟地址映射到同一个物理地址,从而减少数据拷贝次数!mmap就是用了虚拟内存这个特点,它将内核中的读缓冲区与用户空间的缓冲区进行映射,所有的IO都在内核中完成。

mmap+write实现的零拷贝流程如下:

  • 用户进程通过mmap方法向操作系统内核发起IO调用,上下文从用户态切换为内核态。
  • CPU利用DMA控制器,把数据从硬盘中拷贝到内核缓冲区。
  • 上下文从内核态切换回用户态,mmap方法返回。
  • 用户进程通过write方法向操作系统内核发起IO调用,上下文从用户态切换为内核态。
  • CPU将内核缓冲区的数据拷贝到的socket缓冲区。
  • CPU利用DMA控制器,把数据从socket缓冲区拷贝到网卡,上下文从内核态切换回用户态,write调用返回。 

可以发现,mmap+write实现的零拷贝,I/O发生了4次用户空间与内核空间的上下文切换,以及3次数据拷贝。其中3次数据拷贝中,包括了2次DMA拷贝和1次CPU拷贝

mmap是将读缓冲区的地址和用户缓冲区的地址进行映射,内核缓冲区和应用缓冲区共享,所以节省了一次CPU拷贝‘’并且用户进程内存是虚拟的,只是映射到内核的读缓冲区,可以节省一半的内存空间

2、sendfile实现的零拷贝

sendfile是Linux2.1内核版本后引入的一个系统调用函数

sendfile表示在两个文件描述符之间传输数据,它是在操作系统内核中操作的,避免了数据从内核缓冲区和用户缓冲区之间的拷贝操作,因此可以使用它来实现零拷贝。

sendfile实现的零拷贝流程如下:

  1. 用户进程发起sendfile系统调用,上下文(切换1)从用户态转向内核态
  2. DMA控制器,把数据从硬盘中拷贝到内核缓冲区。
  3. CPU将读缓冲区中数据拷贝到socket缓冲区
  4. DMA控制器,异步把数据从socket缓冲区拷贝到网卡,
  5. 上下文(切换2)从内核态切换回用户态,sendfile调用返回。

 可以发现,sendfile实现的零拷贝,I/O发生了2次用户空间与内核空间的上下文切换,以及3次数据拷贝。其中3次数据拷贝中,包括了2次DMA拷贝和1次CPU拷贝。那能不能把CPU拷贝的次数减少到0次呢?有的,即带有DMA收集拷贝功能的sendfile!

3、sendfile+DMA scatter/gather实现的零拷贝

linux 2.4版本之后,对sendfile做了优化升级,引入SG-DMA技术,其实就是对DMA拷贝加入了scatter/gather操作,它可以直接从内核空间缓冲区中将数据读取到网卡。使用这个特点搞零拷贝,即还可以多省去一次CPU拷贝

sendfile+DMA scatter/gather实现的零拷贝流程如下:

  1. 用户进程发起sendfile系统调用,上下文(切换1)从用户态转向内核态
  2. DMA控制器,把数据从硬盘中拷贝到内核缓冲区。
  3. CPU把内核缓冲区中的文件描述符信息(包括内核缓冲区的内存地址和偏移量)发送到socket缓冲区
  4. DMA控制器根据文件描述符信息,直接把数据从内核缓冲区拷贝到网卡
  5. 上下文(切换2)从内核态切换回用户态,sendfile调用返回。

可以发现,sendfile+DMA scatter/gather实现的零拷贝,I/O发生了2次用户空间与内核空间的上下文切换,以及2次数据拷贝。其中2次数据拷贝都是包DMA拷贝。这就是真正的 零拷贝(Zero-copy) 技术,全程都没有通过CPU来搬运数据,所有的数据都是通过DMA来进行传输的。

五、java提供的零拷贝方式

1、Java NIO对mmap的支持

Java NIO有一个MappedByteBuffer的类,可以用来实现内存映射。它的底层是调用了Linux内核的mmap的API。

public class MmapTest { public static void main(String[] args) { try {FileChannel readChannel = FileChannel.open(Paths.get("./jay.txt"), StandardOpenOption.READ);MappedByteBuffer data = readChannel.map(FileChannel.MapMode.READ_ONLY, 0, 1024 * 1024 * 40);FileChannel writeChannel = FileChannel.open(Paths.get("./siting.txt"), StandardOpenOption.WRITE, StandardOpenOption.CREATE); //数据传输 writeChannel.write(data);readChannel.close();writeChannel.close();}catch (Exception e){System.out.println(e.getMessage());}}
}

2、Java NIO对sendfile的支持

FileChannel的transferTo()/transferFrom(),底层就是sendfile() 系统调用函数。Kafka 这个开源项目就用到它,平时面试的时候,回答面试官为什么这么快,就可以提到零拷贝sendfile这个点。

public class SendFileTest { public static void main(String[] args) { try {FileChannel readChannel = FileChannel.open(Paths.get("./jay.txt"), StandardOpenOption.READ); long len = readChannel.size(); long position = readChannel.position();FileChannel writeChannel = FileChannel.open(Paths.get("./siting.txt"), StandardOpenOption.WRITE, StandardOpenOption.CREATE); //数据传输 readChannel.transferTo(position, len, writeChannel);readChannel.close();writeChannel.close();} catch (Exception e) {System.out.println(e.getMessage());}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/8356.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【若依】框架搭建,前端向后端如何发送请求,验证码的实现

若依框架 若依框架(Ruoyi)是一款基于Spring Boot和Spring Cloud的开源快速开发平台。它提供了一系列的基础功能和通用组件,能够帮助开发者快速构建企业级应用。若依框架采用了模块化的设计理念,用户可以选择需要的功能模块进行集…

STM32中static和extern的用法

static: A. static变量 称为静态变量。根据变量的类型可以分为静态局部变量和静态全程变量。 1. 静态局部变量 它与局部变量的区别在于: 在函数退出时, 这个变量始终存在, 但不能被其它 函数使用, 当再次进入该函数时, 将保存上次的结果。其它与局部变量一样。…

观察级水下机器人第一次使用总结2023年6月

最近有个科研项目需要用到ROV,其合同三年之前就签订了,由于疫情的影响,一直没有执行。刚好我们的ROV也验收了,正好派上用场。因为属于ROV使用的菜鸟级,我们邀请厂家无锡智海张工和陈工,中海辉固ROV操作经验…

合理组织安卓活动

本文所有代码均存放于https://github.com/MADMAX110/Starbuzz 开始构建一个应用时,你会考虑这个应用要包含什么,会有各种各样的很多想法,如何组织这些想法来建立一个直观、清晰的应用。 一、活动归类 要组织各种各样的活动,有一种…

详解Ribbon

目录 1.概述 2.使用 2.1.引入 2.2.启用 2.3.切换负载均衡算法 3.负载均衡源码分析 3.1.接口 3.2.抽象类 3.3.选择服务器 3.4.原子性 4.自定义负载均衡算法 1.概述 Ribbon是Netflix开源的一个客户端负载均衡库,也是Spring Cloud Netflix项目的核心组件之…

vue3学习之路

Vue3简介 面临的问题:随着功能的增长,复杂组件的代码变得难以维护,Vue3 就随之而来,TypeScript 使用的越来越多,Vue3就是 TS 写的所以能够更好的支持 TypeScript 在这里介绍就这么简单 vue2 的绝大多数的特性 在 Vu…

Xray-基础详细使用

一:Xray介绍 Xray 是一款功能强大的安全评估工具,由多名经验丰富的一线安全从业者呕心打造而成,可支持与AWVS,BP等众多安全工具联合使用。 二:Xray简易架构: 说明:了解 Xray 的整体架构可以更…

【elementplus】解决el-table开启show-overflow-tooltip后,tooltip的显示会被表格边框遮挡的问题

如图所示: 原因: 1. el-table没有设置高度;2.就是被遮住了 解决: 方法一:给el-table设置高度 方法二: .el-table {overflow: visible !important;}如果不想给el-table设置高度,就直接使用方法二解决即可

机器学习面试题- 特征工程

目录标题 1、为什么要对特征做归一化2、对特征归一化的方法2.1 线性函数归一化2.2 零均值归一化 3、对数据预处理时,如何处理类别型特征3.1 序号编码3.2 独热编码3.3 二进制编码 4、什么是组合特征?如何处理高维组合特征?5、怎样有效地找到组…

es学习知识汇总

es的索引库就相当于mysql的表 es的文档就相当于mysql的一条数据(内容) 用代码创建索引库到es 新增文档(相当于mysql的一条数据(内容) 模拟将数据库中的到内容新增到es中 查询文档 注:以下 hotel为索引库名…

【Python数据处理】-Pandas笔记

Python数据处理-Pandas笔记 📝 基本概念 Pandas是一个强大的Python数据处理库,它提供了高效的数据结构和数据分析工具,使数据处理变得简单而快速。本篇笔记将介绍Pandas中最常用的数据结构——Series和DataFrame,以及数据处理的…

使用SQL语句创建存储过程

前言: 本篇文章是记录学校学习SQL server中知识,可用于复习资料. 目录 前言:一、存储过程的创建1、创建简单存储过程2、创建带参数的存储过程3、创建带输出参数的存储过程 二 、使用T一SQL语句管理和维护存储过程2.1 使用sp_helptext查看存储过程student_sc的定义脚本2.2 使用…