2023年高教社杯数学建模思路 - 复盘:光照强度计算的优化模型

文章目录

  • 0 赛题思路
    • 1 问题要求
    • 2 假设约定
    • 3 符号约定
    • 4 建立模型
    • 5 模型求解
    • 6 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 问题要求

现在已知一个教室长为15米,宽为12米,在距离地面高2.5米的位置均
匀的安放4个光源(分别为1、2、3、4),各个光源的光照强度均为一个单位,如下图
在这里插入图片描述
要求:

  • (1)如何计算教室内任意一点的光照强度?(光源对目标点的光照强度与该光源到目标点距离的平方成反比,与该光源的强度成正比).
  • (2)画出距离地面1米处各个点的光照强度与位置(横纵坐标)之间的函数关系曲面图,试同时给出一个近似的函数关系式.
  • (3)假设离地面1米高正是学生桌面的高度,如何设计这四个点光源的位置,才能使学生对光照的平均满意度达到最高?
  • (4)若将题目中的点光源换成线光源,以上(2)、(3)问的结果又如何?

(对于(1)、(2)问,假设横向(纵向)墙壁与光源、光源与光源、光源与墙壁之间的距离是相等的.)

2 假设约定

  • 1 光不会通过窗、门等外涉,也不考虑光在空气中的消耗,即光照强度和不变;
  • 2 室内不受外界光源影响;
  • 3 教室高度为2.5米;
  • 4 不考虑光的反射;
  • 5 线光源发光是均匀的.

3 符号约定

在这里插入图片描述

4 建立模型

在这里插入图片描述
在这里插入图片描述

5 模型求解

在这里插入图片描述
在这里插入图片描述

6 实现代码

matlab 实现代码
建议最好用python去实现,图会好看一些,而且国内当前趋势会逐渐淘汰matlab,目前有些学校已经无法使用matlab了

clear
clc
max=0;min=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j     for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));endendif l>maxmax=l;x11=x1;y11=y1;x12=x2;y12=y2;x13=x3;y13=y3;x14=x4;y14=y4;endp=l./(120.*150);Q=0;for x=0:0.1:12for y=0:0.1:15Q=Q+(k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2))-p).^2.^(1./2);endendif min>Qmin=Q;x21=x1;y21=y1;x22=x2;y22=y2;x23=x3;y23=y3;x24=x4;y24=y4;endend
end
disp(['最大值','x11=',num2str(x11),'  ','y11=',num2str(y11),'  ','x12=',num2str(x12),'  ','y12=',num2str(y12),'  ','x13=',num2str(x13),'  ','y13=',num2str(y13),'  ','x14=',num2str(x14),'  ','y14=',num2str(y14)])
disp(['最平均','x21=',num2str(x21),'  ','y21=',num2str(y21),'  ','x22=',num2str(x22),'  ','y22=',num2str(y22),'  ','x23=',num2str(x23),'  ','y23=',num2str(y23),'  ','x24=',num2str(x24),'  ','y24=',num2str(y24)])
附录二:
clear
clc
max=0;min=4;li=4;
for i=0:0.1:3for j=0.1:0.1:4s=0;x1=8+i,y1=5-jx2=8+i,y2=10+jx3=4-i,y3=10+jx4=4-i,y4=5-j     for x=0:0.1:12for y=0:0.1:15for z=0:0.1:2.5if x1~=x & y1~=y & x2~=x & y2~=y & x3~=x & y3~=y & x4~=x & y4~=y s=s+1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1./((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2);endendendendk=4./s;l=0;z=1;e=0for x=0:0.1:12for y=0:0.1:15l=l+k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));r=k.*(1./((x1-x).^2+(y1-y).^2+(2.5-z).^2)+1/((x2-x).^2+(y2-y).^2+(2.5-z).^2)+1./((x3-x).^2+(y3-y).^2+(2.5-z).^2)+1./((x4-x).^2+(y4-y).^2+(2.5-z).^2));e=e+(r-6*10^(-32))^2;endendS=(l-0.1278)^2+eif S<lili=Sx11=x1,y11=y1,  x12=x2,y12=y2,  x13=x3,y13=y3,  x14=x4,y14=y4,en4en4
en4
disp(['x11=',num2str(x11),'  ','y11=',num2str(y11),'  ','x12=',num2str(x12),'  ','y12=',num2str(y12),'  ','x13=',num2str(x13),'  ','y13=',num2str(y13),'  ','x14=',num2str(x14),'  ','y14=',num2str(y14)])
li

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/83636.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

私有化部署即时通讯平台,30分钟替换钉钉和企业微信

随着企业对即时通讯和协作工具的需求不断增长&#xff0c;私有化部署的即时通讯平台成为企业的首选。WorkPlus作为有10余年行业深耕经验与技术沉淀品牌&#xff0c;以其安全高效的私有化部署即时通讯解决方案&#xff0c;帮助企业在30分钟内替换钉钉和企业微信。本文将深入探讨…

Java设计模式-职责链模式

1 概述 在现实生活中&#xff0c;常常会出现这样的事例&#xff1a;一个请求有多个对象可以处理&#xff0c;但每个对象的处理条件或权限不同。例如&#xff0c;公司员工请假&#xff0c;可批假的领导有部门负责人、副总经理、总经理等&#xff0c;但每个领导能批准的天数不同…

无涯教程-进程 - 内存映射

mmap()系统调用提供了将文件或设备映射到内存的调用进程的虚拟地址空间中的映射。这有两种类型- 文件映射 - 此映射将进程的虚拟内存区域映射到文件&#xff0c;这意味着读取或写入那些内存区域会导致文件被读取或写入&#xff0c;这是默认的映射类型。 匿名映射 - 此映射…

C语言_分支和循环语句(1)

文章目录 前言分支语句循环语句一、什么是语句1.C语句可分为以下五类&#xff1a;2. 控制语句3.以下三类&#xff1a; 二、分支语句&#xff08;选择结构&#xff09;2.1 .1 if语句语法结构2.1.2 if书写形式的对比2.1.3 练习2.2 switch 语句 2.2.1 在switch语句中的break2.2.2 …

java八股文面试[JVM]——JVM调优

知识来源&#xff1a; 【2023年面试】JVM性能调优实战_哔哩哔哩_bilibili

ImportError: cannot import name ‘SQLDatabaseChain‘ from ‘langchain‘解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

一文了解BFD技术:实现故障快速检测!

一、概诉 BFD提供了一个通用的、标准化的、介质无关的、协议无关的快速故障检测机制&#xff0c;有以下两大优点&#xff1a; 1.对相邻转发引擎之间的通道提供轻负荷、快速故障检测。 2.用单一的机制对任何介质、任何协议层进行实时检测。 BFD是一个简单的“Hello”协议。两个…

vue关闭弹窗刷新父页面 this.$refs

代码截图 主页面 弹出框页面 接这一篇文章后续 参考链接

Arduino驱动四位0.36英寸共阴数码管模块

目录 一、简介二、参数性能三、电路原理图四、使用方法 一、简介 点击图片购买 四位0.36英寸共阴数码管模块由一个12引脚的0.36英寸红色共阴数码管和一个TM1650驱动芯片构成&#xff0c;大大减少了驱动引脚与连线&#xff0c;只需要四根引线IIC即可控制数码管的显示。TM11650是…

【C++进阶(一)】STL大法以及string的使用

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:C从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学习C   &#x1f51d;&#x1f51d; STL标准库 1. 前言2. STL库的版本以及缺陷3. ST…

浅析阿里云灵积(平台)模型服务

简介&#xff1a; DashScope灵积模型服务以模型为中心&#xff0c;致力于面向AI应用开发者提供品类丰富、数量众多的模型选择&#xff0c;并为其提供开箱即用、能力卓越、成本经济的模型服务API。DashScope灵积模型服务依托达摩院等机构的优质模型&#xff0c;在阿里云基础设施…

opencv 案例实战02-停车场车牌识别SVM模型训练及验证

1. 整个识别的流程图&#xff1a; 2. 车牌定位中分割流程图&#xff1a; 三、车牌识别中字符分割流程图&#xff1a; 1.准备数据集 下载车牌相关字符样本用于训练和测试&#xff0c;本文使用14个汉字样本和34个数字跟字母样本&#xff0c;每个字符样本数为40&#xff0c;样本尺…