【Matlab】神经网络遗传算法(BP-GA)函数极值寻优——非线性函数求极值

目前关于神经网络遗传算法函数极值寻优——非线性函数求极值的博客资源已经不少了,我看了下来源,最初的应该是来自于Matlab中文论坛,论坛出版的《MATLAB神经网络30个案例分析》第4章就是《神经网络遗传算法函数极值寻优——非线性函数极值寻优》。
【简书】神经网络遗传算法函数极值寻优
【博客网】MATLAB神经网络(4) 神经网络遗传算法函数极值寻优——非线性函数极值寻优

参考前人的文章资源,本篇博客将对神经网络遗传算法函数极值寻优进行解析,说明代码使用方法。

1.背景条件

要求:对于未知模型(函数表达式未知)求解极值。
条件:已知模型的一些输入输出数据。

程序的示例是根据用神经网络遗传算法寻优非线性函数 y = x 1 2 + x 2 2 y = x_1^2+x_2^2 y=x12+x22 的极值,输入参数有2个,输出参数有1个,易知函数有极小值0,极小值点为(0, 0)。已知的只有一些输入输出数据(用rand函数生成输入,然后代入表达式生成输出):

for i=1:4000input(i,:)=10*rand(1,2)-5;output(i)=input(i,1)^2+input(i,2)^2;
end

2.算法框架

对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力遗传算法的非线性寻优能力寻找函数极值。

在这里插入图片描述

3.BP神经网络函数说明

newff

BP神经网络参数设置函数
函数形式:

net=newff(P, T, S, TF, BTF, BLF, PF, IPF, OPF, DDF)

P:输入数据矩阵。
T:输出数据矩阵。
S:隐含层节点数。

例如:

net=newff(inputn,outputn,15); % 单隐含层BP神经网络,隐含层的节点数是15

通过配置S向量,可以方便地得到包含多个隐含层的BP神经网络,如下面语句:

net=newff(inputn, outputn, [5,5]); % 双隐含层BP神经网络,每个隐含层的节点数都是5

train

BP神经网络训练函数
函数形式:

[net, tr] = train(NET, X, T, Pi, Ai)

NET:待训练网络。
X:输入数据矩阵。
T:输出数据矩阵。

例如:

net=train(net,inputn,outputn);

sim

BP神经网络预测函数
函数形式:

y=sim(net, x)

net :训练好的网络。
x:输入数据。

例如:

an=sim(net,inputn_test);

4.完整代码

data.m

用于生成神经网络拟合的原始数据。

for i=1:4000input(i,:)=10*rand(1,2)-5;output(i)=input(i,1)^2+input(i,2)^2;
end
output=output';save data input output

BP.m

用函数输入输出数据训练BP神经网络,使训练后的网络能够拟合非线性函数输出,保存训练好的网络用于计算个体适应度值。根据非线性函数方程随机得到该函数的4000组输入输出数据,存储于data中,其中input为函数输入数据,output为函数对应输出数据,从中随机抽取3900组训练数据训练网络,100组测试数据测试网络拟合性能。最后保存训练好的网络。

%% 清空环境变量
clc
%cleartic
%% 训练数据预测数据提取及归一化
%加载输入输出数据
load data input output%从1到4000间随机排序
k=rand(1,4000);
[m,n]=sort(k);%找出训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);%% BP网络训练
% %初始化网络结构
net=newff(inputn,outputn,5);% 设置网络参数:迭代次数、学习率和目标
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.0000004;%网络训练
net=train(net,inputn,outputn);%% BP网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);%网络预测输出
an=sim(net,inputn_test);%网络输出反归一化
BPoutput=mapminmax('reverse',an,outputps);%% 结果分析figure(1)
plot(BPoutput,':og')
hold on
plot(output_test,'-*');
legend('预测输出','期望输出','fontsize',12)
title('BP网络预测输出','fontsize',12)
xlabel('样本','fontsize',12)
ylabel('输出','fontsize',12)
%预测误差
error=BPoutput-output_test;figure(2)
plot(error,'-*')
title('神经网络预测误差')figure(3)
plot((output_test-BPoutput)./BPoutput,'-*');
title('神经网络预测误差百分比')errorsum=sum(abs(error))tocsave data net inputps outputps

Code.m

编码成染色体。

function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% ret        output: 染色体的编码值
flag=0;
while flag==0pick=rand(1,length(lenchrom));ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret中flag=test(lenchrom,bound,ret);     %检验染色体的可行性
end

fun.m

把训练好的BP神经网络预测输出作为个体适应度值。

function fitness = fun(x)
% 函数功能:计算该个体对应适应度值
% x           input     个体
% fitness     output    个体适应度值%
load data net inputps outputps%数据归一化
x=x';
inputn_test=mapminmax('apply',x,inputps);%网络预测输出
an=sim(net,inputn_test);%网络输出反归一化
fitness=mapminmax('reverse',an,outputps);

对于求极小值的函数,适应度可以设为BP网络预测结果,如果需要求极大值,可以对适应度取反。

Select.m

选择操作采用轮盘赌法从种群中选择适应度好的个体组成新种群。

function ret=select(individuals,sizepop)
% 本函数对每一代种群中的染色体进行选择,以进行后面的交叉和变异
% individuals input  : 种群信息
% sizepop     input  : 种群规模
% ret         output : 经过选择后的种群fitness1=1./individuals.fitness;
sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;
index=[]; 
for i=1:sizepop   %转sizepop次轮盘pick=rand;while pick==0    pick=rand;        endfor i=1:sizepop    pick=pick-sumf(i);        if pick<0        index=[index i];            break;  %寻找落入的区间,此次转轮盘选中了染色体i,注意:在转sizepop次轮盘的过程中,有可能会重复选择某些染色体endend
end
individuals.chrom=individuals.chrom(index,:);
individuals.fitness=individuals.fitness(index);
ret=individuals;

Cross.m

交叉操作从种群中选择两个个体,按一定概率交叉得到新个体。

function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss                input  : 交叉概率
% lenchrom              input  : 染色体的长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% ret                   output : 交叉后的染色体for i=1:sizepop  %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)% 随机选择两个染色体进行交叉pick=rand(1,2);while prod(pick)==0pick=rand(1,2);endindex=ceil(pick.*sizepop);% 交叉概率决定是否进行交叉pick=rand;while pick==0pick=rand;endif pick>pcrosscontinue;endflag=0;while flag==0% 随机选择交叉位pick=rand;while pick==0pick=rand;endpos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同pick=rand; %交叉开始v1=chrom(index(1),pos);v2=chrom(index(2),pos);chrom(index(1),pos)=pick*v2+(1-pick)*v1;chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束flag1=test(lenchrom,bound,chrom(index(1),:));  %检验染色体1的可行性flag2=test(lenchrom,bound,chrom(index(2),:));  %检验染色体2的可行性if   flag1*flag2==0flag=0;else flag=1;end    %如果两个染色体不是都可行,则重新交叉endend
ret=chrom;

test.m

检验染色体的可行性。

function flag=test(lenchrom,bound,code)
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% code       output: 染色体的编码值x=code; %先解码
flag=1;
if (x(1)<bound(1,1))&&(x(2)<bound(2,1))&&(x(1)>bound(1,2))&&(x(2)>bound(2,2))flag=0;
end

Mutation.m

变异操作从种群中随机选择一个个体,按一定概率变异得到新个体。

function ret=Mutation(pmutation,lenchrom,chrom,sizepop,pop,bound)
% 本函数完成变异操作
% pcorss                input  : 变异概率
% lenchrom              input  : 染色体长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% opts                  input  : 变异方法的选择
% pop                   input  : 当前种群的进化代数和最大的进化代数信息
% ret                   output : 变异后的染色体
for i=1:sizepop   %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,%但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)% 随机选择一个染色体进行变异pick=rand;while pick==0pick=rand;endindex=ceil(pick*sizepop);% 变异概率决定该轮循环是否进行变异pick=rand;if pick>pmutationcontinue;endflag=0;while flag==0% 变异位置pick=rand;while pick==0      pick=rand;endpos=ceil(pick*sum(lenchrom));  %随机选择了染色体变异的位置,即选择了第pos个变量进行变异v=chrom(i,pos);        v1=v-bound(pos,1);        v2=bound(pos,2)-v;        pick=rand; %变异开始        if pick>0.5delta=v2*(1-pick^((1-pop(1)/pop(2))^2));chrom(i,pos)=v+delta;elsedelta=v1*(1-pick^((1-pop(1)/pop(2))^2));chrom(i,pos)=v-delta;end   %变异结束flag=test(lenchrom,bound,chrom(i,:));     %检验染色体的可行性end
end
ret=chrom;

主函数 Genetic.m

%% 清空环境变量
clc
% clear%% 初始化遗传算法参数
%初始化参数
maxgen=100;                         %进化代数,即迭代次数
sizepop=20;                        %种群规模
pcross=[0.4];                       %交叉概率选择,0和1之间
pmutation=[0.2];                    %变异概率选择,0和1之间lenchrom=[1 1];          %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5;-5 5];  %数据范围individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]);  %将种群信息定义为一个结构体
avgfitness=[];                      %每一代种群的平均适应度
bestfitness=[];                     %每一代种群的最佳适应度
bestchrom=[];                       %适应度最好的染色体%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop%随机产生一个种群individuals.chrom(i,:)=Code(lenchrom,bound);   x=individuals.chrom(i,:);%计算适应度individuals.fitness(i)=fun(x);   %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(individuals.fitness);
bestchrom=individuals.chrom(bestindex,:);  %最好的染色体
avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness]; %% 迭代寻优
% 进化开始
for i=1:maxgeni% 选择individuals=Select(individuals,sizepop); avgfitness=sum(individuals.fitness)/sizepop;% 交叉individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);% 变异individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[i maxgen],bound);% 计算适应度 for j=1:sizepopx=individuals.chrom(j,:); %解码individuals.fitness(j)=fun(x);   end%找到最小和最大适应度的染色体及它们在种群中的位置[newbestfitness,newbestindex]=min(individuals.fitness);[worestfitness,worestindex]=max(individuals.fitness);% 代替上一次进化中最好的染色体if bestfitness>newbestfitnessbestfitness=newbestfitness;bestchrom=individuals.chrom(newbestindex,:);endindividuals.chrom(worestindex,:)=bestchrom;individuals.fitness(worestindex)=bestfitness;avgfitness=sum(individuals.fitness)/sizepop;trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束%% 结果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('适应度曲线','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
axis([0,100,0,1])
disp('适应度                   变量');
x=bestchrom;
% 窗口显示
disp([bestfitness x]);

5.代码使用说明

上述代码运行顺序

data.m 生成数据(如果已有 input output 数据可跳过),
BP.m 进行BP神经网络训练及函数拟合,
Genetic.m(主函数)利用遗传算法求极值。

求最大值的方法

上述代码用于求解最小值,对于求解最大值的需求,可以在适应度函数里面,对适应度计算结果求反,把求解最大值的问题转化为求解最小值的问题。

例如:对于非线性函数 y = − ( x 1 2 + x 2 2 ) + 4 y = -(x_1^2+x_2^2)+4 y=(x12+x22)+4

for i=1:4000input(i,:)=10*rand(1,2)-5;output(i)=-(input(i,1)^2+input(i,2)^2)+4;
end

求最大值时,需要在 fun.m 里面,修改最后一行代码:

fitness=-mapminmax('reverse',an,outputps);

最终运行找到的极值点为(0.4714, -0.0319),适应度为-3.7554,极值需要对适应度取反,为3.7554。

注意:每次运行结果不尽相同。

6.代码运行结果

y = x 1 2 + x 2 2 y = x_1^2+x_2^2 y=x12+x22 求极小值

BP神经网络拟合

运行BP.m之后:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

输出:

errorsum =1.2004历时 1.386858 秒。

注意:每次运行结果不尽相同。

遗传算法寻优

运行主函数 Genetic.m之后:
在这里插入图片描述

输出:

...
i =100适应度                   变量0.0247    0.0001    0.0001

最终结果最优个体为(0.0001,0.0001),适应度为0.0247,与实际最小值点(0,0)和最小值0已经很接近了。

注意:每次运行结果不尽相同。

参考

【知乎】遗传算法基础、MATLAB的遗传算法(工具箱实现)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/8384.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一次源码编译安装PostgreSql失败

需要perl&#xff1b;之前博文已提到&#xff1b;之前有一种编程语言叫perl&#xff0c;此perl应该不是那个&#xff1b;可到其官网下载&#xff0c;Perl Download - www.perl.org 安装时添加到环境变量&#xff1b; 可能是一个东西&#xff1b;有编程语言和工具&#xff1b;大…

Python爬虫使用代理IP的实现

使用爬虫时&#xff0c;如果目标网站对访问的速度或次数要求较高&#xff0c;那么你的 IP 就很容易被封掉&#xff0c;也就意味着在一段时间内无法再进行下一步的工作。这时候代理 IP 能够给我们带来很大的便利&#xff0c;不管网站怎么封&#xff0c;只要能找到一个新的代理 I…

在 TypeScript 中有效地使用 keyof 和 typeof 来表示类型

在本文中&#xff0c;我们将学习如何通过组合类型运算符和枚举来提取和声明常量类型typeof&#xff0c;以使您的代码库得到优化。keyof 先决条件 为了获得更好的编码体验&#xff0c;您应该在 IDE 中安装 TypeScript&#xff0c;例如VSCode。它将为您提供许多基本功能&#xff…

MySQL的基本语法

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于MySQL的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一.数据库&#xff08;建立&#xff0c;查…

备战秋招002(20230704)

文章目录 前言一、今天学习了什么&#xff1f;二、关于问题的答案1.线程池2.synchronized关键字3、volatile 总结 前言 提示&#xff1a;这里为每天自己的学习内容心情总结&#xff1b; Learn By Doing&#xff0c;Now or Never&#xff0c;Writing is organized thinking. …

【网络原理】TCP/IP协议五层模型

&#x1f94a;作者&#xff1a;一只爱打拳的程序猿&#xff0c;Java领域新星创作者&#xff0c;CSDN、阿里云社区优质创作者。 &#x1f93c;专栏收录于&#xff1a;计算机网络原理 本期讲解协议、OSI七层模型、TCP/IP五层模型、网络设备所在的分层、数据的封装和分佣。 目录 …

浏览器绘制图表的 N 种方法 | 可视化

前言 DORAVIS 可视化大屏编辑器&#xff0c;是植根于浏览器的可视化平台。我们不难发现&#xff0c;DORAVIS 的众多图表中&#xff0c;有多种实现方案。如&#xff0c;基于 ECharts 二次开发的 BI 图表&#xff0c;有基于 Mapbox/leaflet 等实现的地理图表&#xff0c;以及根据…

【Flutter 组件】005-基础组件:单选、开关和复选框

【Flutter 组件】005-基础组件&#xff1a;单选、开关和复选框 文章目录 【Flutter 组件】005-基础组件&#xff1a;单选、开关和复选框一、概述二、基本使用1、开关代码示例运行结果 2、复选框代码示例运行结果 3、多个选项单选代码示例运行结果 4、多个选项多选代码示例运行结…

易微联2.4G通断器添加到手机步骤

蓝牙款无WIFI&#xff0c;不用扫码&#xff0c;按住通断器上的按钮&#xff0c;会先闪一下&#xff0c;再闪两下。闪一下的时候连手机&#xff0c;闪两下清码。 手机上打开易微联app&#xff0c;依次点击加号/轻智能遥控器/单按键遥控器/添加完成。 返回打开刚才添加的开关&a…

图像处理--边缘检测算子

算子推导过程 1、知识引入&#xff1a; 在一维连续数集上有函数f(x),我们可以通过求导获得该函数在任一点的斜率&#xff0c;根据导数的定义有&#xff1a; 在二维连续数集上有函数f(x,y),我们也可以通过求导获得该函数在x和y分量的偏导数&#xff0c;根据定义有&#xff1a; …

升级Xcode14.3,项目无法运行解决

报错&#xff1a;link command failed with exit code 1(use -v to see invocaiton) 原因&#xff1a;新版本Xcode删除了特定目录下的一些文件 解决&#xff1a; post_install do |installer|installer.pods_project.targets.each do |target|target.build_configurations.e…

spring源码分析-ApplicationContext----扩展组件event listener

我们知道 spring中的ApplicationContext在beanFactory(提供基础bean处理)基础上增加了扩展组件&#xff0c;例如国际化&#xff0c;资源&#xff0c;发布事件和监听事件&#xff0c;今天主要针对发布和监听事件做一次源码分析&#xff0c;看到底发布和监听是如何实现的&#xf…