OpenAI Function calling

开篇

原文出处

最近 OpenAI 在 6 月 13 号发布了新 feature,主要针对模型进行了优化,提供了 function calling 的功能,该 feature 对于很多集成 OpenAI 的应用来说绝对是一个“神器”。

Prompt 的演进

如果初看 OpenAI 官网对function calling的介绍,似乎不足以体现它的重要性。为了更进一步理解它的作用,我们先来简单回顾一下在使用 OPenAI 时 Prompt 是如何演进的。

Prompt 1.0

prompt 1.0

还记得 chatGPT 在最一开始大火时,除了 AI 强大的能力作为一个吸引点之外,“低门槛的要求使得所有人都可以使用”也扮演着至关重要的角色。也正是如此,大家不再对 AI 感到陌生,借助和 AI 对话,随便一个 Prompt 就可以让使用者直接或间接的获得帮助。

但是随着使用深度的增加,大家慢慢发现chatGPT有时会思维发散,往往不能聚焦关键问题,甚至会“无言乱语”。

在此之上,1.0 版本的 Prompt 出现,它要求对话开始前需要设定上下文。在这样的提示下,AI 能够有较好的表现,并且不再发散,可以解决较为简单的问题。

Prompt 2.0

prompt 2.0

随着使用场景的复杂化,单纯的设置一个上下文给chatGPT已经远远不够。你必须给“足”上下文,最简单的方式就是提供exmaple,这种做法的背后逻辑和 COT(Chain of Thought)是一样的。

2.0 版本的 Prompt 是使用最广泛的也是最可靠的。

Prompt 3.0

prompt 3.0

3.0 版本的 Prompt 并非比 2.0 要高级,只是在需求上不一样。因为随着大量 AI 工具和 OpenAI 集成,想要充分利用 AI 的能力,让更多的系统和模块和你结合,就必须得提取参数或者返回特定的输出。

因此,3.0 聚焦更多的是集成。

Function calling

Prompt 在迭代到 3.0 版本后,AI 的缺点已经一览无遗。虽然chatGPT有大量的知识储备,但它的数据都是预训练的,由于不能联网,所以它并不是“无所不知”的。

因此,集成第三方系统对模型的赋能就成为了当下众多 AI 应用的首要方案。可赋能就代表得知道用户到底要知道什么,这就是 3.0 版本的努力方向。但是 3.0 的版本其实并不能非常稳定的输出特定格式,或者即便格式可以固定,json 数据的类型也不能很好的控制。比如上面的 3.0 例子里,不是所有的 AI 模型都能稳定输出price: 1500,也有可能是$1500(Bard)。
也许你会觉得1500$1500的差异并不大,大不了可以处理一下前缀之类的问题,那就大错特错了。因为这是作为 不同模块(或系统)链接的桥梁,就如同 API 之间集成的契约一般,必须有严格的定义。

一个典型的例子就是前段时间大火的Auto-GPT, 在 3.5 turbo 的模型下,它很难完成一个任务,往往会陷入无限的循环,主要的原因就是它需要非常严格的上下文衔接来集成各种 command,但凡有一丁儿点的差异都会导致“连接”失败。

在此背景下,function calling出现了。

它允许用户定义一个或多个 function 描述,该描述满足 API doc 的规范,定义了参数的类型和含义。AI 在经过 function calling 的调教后,可以准确的理解这种规范并按照上下文去决定是否可以“命中”该方法,如果“命中”,则会返回该方法的参数。

到此它已经解决了参数提取的问题,但并没有结束。此时开发者可以利用这个参数去集成第三方系统,获取特定的信息然后把结果反馈给模型,这样模型就有了这个方法的输入和输出,看起来像是模型“执行”了该方法,而实际是模型被动的获取了它没有的知识。

最后,AI 根据新获得的知识和信息,给用户输出最后的结果。

Example: DB 搜索

假设我们想利用 AI 在 DB 层建立搜索接口,我们可以按照以下步骤:

    1. 将 DB 的 meta 数据作为上下文,定义 ask_database 的方法规范
{"functions": [{"name": "ask_database","description": "Use this function to answer user questions about music. Output should be a fully formed SQL query.","parameters": {"type": "object","properties": {"query": {"type": "string","description": "SQL query extracting info to answer the user\\'s question.SQL should be written using this database schema:\"Table name: album_tb; Columns: album(string), published_at(string), likes(string)\".The query should be returned in plain text, not in JSON."}},"required": ["query"]}}]
}
    1. 设定 system 上下文,提示模型如果 user 的 prompt 无法命中 function 的话就不要强行“脑补”

这很有用,说明不是所有的 Prompt 都需要被 function 来解析,有点类似 if else,这样可以回归到正常的对话中。

{"role": "system","content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."
}
    1. 提问
{"role": "user","content": "What are the top 2 the albums"
}
    1. 模型命中 function 并且返回解析的参数
{"role": "assistant","content": null,"function_call": {"name": "ask_database","arguments": "{\n  \"query\": \"SELECT * FROM album_tb ORDER BY likes DESC LIMIT 5\"\n}"}
}
    1. 查询 DB,将数据返回给我模型(赋能)
{"role": "function","name": "ask_database","content": "[{\"album\":\"Tanya\",\"published_at\":\"2000-01-01\",\"likes\":\"10000\"},{\"artist\":\"Im OK\",\"published_at\":\"1999-01-01\",\"likes\":\"20000\"}]"
}
    1. 模型根据新的知识储备响应用户的 Prompt
{"role": "assistant","content": "The top 2 albums are \"Im OK\" with 20,000 likes and \"Tanya\" with 10,000 likes."
}
    1. 再次提问,测试新的知识储备是否被模型深刻理解
{"role": "user","content": "What are the most popular one"
}
    1. 模型可以准确的在新的知识储备进行搜索
{"role": "assistant","content": "The most popular album is \"Im OK\" with 20000 likes."
}

完整的 API 请求如下:

{"model": "gpt-3.5-turbo-0613","messages": [{"role": "system","content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."},{"role": "user","content": "What are the top 2 the albums"},{"role": "assistant","content": null,"function_call": {"name": "ask_database","arguments": "{\n  \"query\": \"SELECT * FROM album_tb ORDER BY likes DESC LIMIT 5\"\n}"}},{"role": "function","name": "ask_database","content": "[{\"album\":\"Tanya\",\"published_at\":\"2000-01-01\",\"likes\":\"10000\"},{\"artist\":\"Im OK\",\"published_at\":\"19999-01-01\",\"likes\":\"20000\"}]"},{"role": "user","content": "What are the most popular one"}],"functions": [{"name": "ask_database","description": "Use this function to answer user questions about music. Output should be a fully formed SQL query.","parameters": {"type": "object","properties": {"query": {"type": "string","description": "SQL query extracting info to answer the user\\'s question.SQL should be written using this database schema:\"Table name: album_tb; Columns: album(string), published_at(string), likes(string)\".The query should be returned in plain text, not in JSON."}},"required": ["query"]}}]
}

模型

OpenAI 在 6 月 13 号的 release 中,专门针对 function calling 发布了新的模型,无论是价格还是上下文的长度都有比较大的变化,以下为 3.5(免费)的模型列表:

release

最后

function calling 对与模型精准的理解 Prompt 和集成外部知识储备系统绝对是一个强大的工具,未来 Prompt 的趋势肯定也会朝着个方向去设计,拭目以待吧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/83901.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI + Milvus:将时尚应用搭建进行到底

在上一篇文章中,我们学习了如何利用人工智能技术(例如开源 AI 向量数据库 Milvus 和 Hugging Face 模型)寻找与自己穿搭风格相似的明星。在这篇文章中,我们将进一步介绍如何通过对上篇文章中的项目代码稍作修改,获得更…

MySQL 日志

目录 一、日志概述 二、二进制日志 1、开启二进制日志 2、查看二进制文件 3、删除二进制日志文件 4、恢复二进制日志 5、暂时停止二进制日志功能 三、错误日志 1、启动和设置错误日志 2、查看错误日志 3、删除错误日志 四、通用查询日志 五、慢查询日志 一、日志概…

如何实现24/7客户服务自动化?建设智能客服知识库

客户自助服务是指用户通过企业或者第三方建立的网络平台或者终端,实现相关的自定义处理。实现客户服务自动化,对提高客户满意度、维持客户关系至关重要。客户服务自动化可以帮助企业以更快的速度和更高的效率来满足客户的售后服务要求,以进一…

红利期已过?2023跨境电商还吃香吗?亚马逊还能做吗?

2022年,由于疫情反复和外部因素的影响,跨境电商的情况并不乐观。但这并不意味着跨境电商已经走到了绝境。随着贸易全球化的深入发展,平台规则不断完善,国家相继出台最新的扶持政策,为跨境电商企业带来了更多的发展机遇…

1.1 VMware Workstation与Kali的安装和配置1

资源见专栏第一篇文章https://blog.csdn.net/algorithmyyds/article/details/132457258 安装VMware 不多加赘述,直接按顺序安装即可。 有以下需注意的地方: 1.建议选择增强型服务; 2.不要加入体验改进计划。是否开启提示更新看你的想法&…

Java数据结构学习和源码阅读(线性数据结构)

线性数据结构 链表 LinkList 链表的数据结构 一组由节点组成的数据结构,每个元素指向下一个元素,是线性序列。 最简单的链表结构: 数据指针(存放执行下一个节点的指针) 不适合的场景: 需要循环遍历将…

JVM及垃圾回收机制

文章目录 1、JVM组成?各部分作用?1.1 类加载器(Class Loaders)1.2 运行时数据区(Runtime Data Area)1.3 执行引擎(Execution Engine)1.4 本地方法接口(Native Interface&…

C++二叉树进阶

本期内容我们讲解二叉树的进阶知识,没有看过之前内容的小伙伴建议先看往期内容 二叉树-----补充_KLZUQ的博客-CSDN博客 目录 二叉搜索树 代码实现 基础框架 Insert Find Erase 析构函数 拷贝构造 赋值 二叉搜索树的应用 全部代码 二叉搜索树 二叉搜索树…

【算法系列篇】前缀和

文章目录 前言什么是前缀和算法1.【模板】前缀和1.1 题目要求1.2 做题思路1.3 Java代码实现 2. 【模板】二维前缀和2.1 题目要求2.2 做题思路2.3 Java代码实现 3. 寻找数组的中心下标3.1 题目要求3.2 做题思路3.3 Java代码实现 4. 除自身以外的数组的乘积4.1 题目要求4.2 做题思…

实验九 根文件系统移植

【实验目的】 熟悉根文件系统的目录结构,构建自己的根文件系统 【实验环境】 ubuntu 14.04 发行版FS4412 实验平台交叉编译工具:arm-none-linux-gnueabi- 【注意事项】实验步骤中以“$”开头的命令表示在 ubuntu 环境下执行 【实验步骤】 一、构建自…

XXL-JOB

XXL-JOB是一个分布式的任务调度平台。 目的:为了自动完成特定的任务,在约定的特定时间去执行任务的过程。 原因:在spring中有scheduled,放到业务层代码上面也可以。但是其无法做到高可用、防止重复执行,单机处理极限…

Java项目-苍穹外卖-Day06-微信小程序开发

文章目录 前言1.HttpClienthttpclient是什么入门案例发送GET请求发送POST请求Httpclient工具类 2.微信小程序介绍准备工作注册小程序和完善对应信息下载开发者工具 入门案例 前言 本篇主要是主要是wx小程序开发入门和HttpClient的使用介绍 完成了苍穹外卖用户端的 微信登陆 和…