opencv 进阶20-随机森林示例

OpenCV中的随机森林是一种强大的机器学习算法,旨在解决分类和回归问题。随机森林使用多个决策树来进行预测,每个决策树都是由随机选择的样本和特征组成的。在分类问题中,随机森林通过投票来确定最终的类别;在回归问题中,随机森林通过平均所有决策树的预测结果来获得最终预测值。

随机森林的基本思想

随机森林是一种监督学习算法,它构建的“森林”是决策树的集合,通常使用Bagging算法进行集成。随机森林首先使用训练出来的分类器集合对新样本进行分类,然后用多数投票或者对输出求均值的方法统计所有决策树的结果。由于森林中的每一棵决策树都具有独立性,可以理解为是某一方面的研究“专家”,因而可以通过投票和求平均值的方法获得比单棵决策树更好的性能。

Bagging算法

由于随机森林通常采用Bagging算法对决策树进行集成,因此有必要了解Bagging算法的工作流程与原理。某些分类器的分类准确率有时只稍好于随机猜测,这样的分类器称为弱分类器。为了提高分类器的性能,通常使用集成学习(Ensemble Learning)的方法将若干弱分类器组合之后生成一个强分类器。

Bagging算法和Boosting算法是集成学习领域的基本算法。

Bagging算法的流程如下所示

在这里插入图片描述
可以看出,Bagging算法的流程分为训练和测试两个阶段。

训练阶段:从原始训练集中使用Bootstrapping抽样方法先随机抽取N个训练样本,之后把这N个训练样本放回原训练集,共进行k轮抽取,得到k个训练子集。使用这k个训练子集,训练k个基础模型(基础模型可以是决策树或神经网络等)。

测试阶段:对于每个测试样本,都使用所有训练好的基础模型进行预测;之后结合所有k个基础模型的结果进行预测。如果是回归问题,则采用k个基础模型的预测平均值作为最终预测结果;如果是分类问题,则对k个基础模型的分类结果进行投票表决,得票最多的类别为最终分类结果。

应用场景

随机森林算法是一种集成学习方法,主要用于解决分类和回归问题。应用场景包括:

  1. 商品推荐系统:可以根据用户历史行为,购买记录等数据,预测用户可能喜欢的商品,从而进行精准推荐。
  2. 医学诊断:可以根据病人的基本信息,症状等数据,预测病人是否患有某种疾病,并给出诊断及治疗方案。
  3. 金融风险评估:通过分析客户的个人信用记录,收入情况等数据,预测客户的违约概率,帮助银行制定个性化的信贷方案。
  4. 股票预测:通过分析历史股价,财务数据等信息,预测未来股价的走势。
  5. 图像识别:可以对图像进行分类,例如将动物图像进行分类,检测图像中是否有猫,狗等动物。
  6. 自然语言处理:可以进行文本分类,例如对新闻进行分类,判断某篇文章是属于国际新闻,体育新闻等。

下面是一个用OpenCV实现随机森林分类器的例子,具体步骤如下:

  1. 导入必要的库
    import numpy as npimport cv2
  1. 准备训练数据和标签
    features = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], np.float32)labels = np.array([0, 1, 1, 0], np.float32)
  1. 初始化随机森林分类器
    rf = cv2.ml.RTrees_create()
  1. 设置训练参数
    params = cv2.ml.RTrees_Params()params.max_depth = 2params.min_sample_count = 1params.calc_var_importance = True
  1. 训练随机森林
    rf.train(cv2.ml.TrainData_create(features, cv2.ml.ROW_SAMPLE, labels), cv2.ml.ROW_SAMPLE, params=params)
  1. 预测
    pred = rf.predict(np.array([[0, 0]], np.float32))print(pred)

这将输出预测的标签。

全部代码:

import numpy as np
import cv2# 生成示例数据
data = np.random.randint(0, 100, (100, 2)).astype(np.float32)
responses = (data[:, 0] + data[:, 1] > 100).astype(np.float32)# 创建并训练随机森林分类器
rf = cv2.ml.RTrees_create()# 设置终止条件(最大迭代次数,最大迭代次数,最小变化值)
rf.setTermCriteria((cv2.TERM_CRITERIA_MAX_ITER, 100, 0.01))# 设置随机森林的最大深度
rf.setMaxDepth(10)# 设置每个叶子节点的最小样本数量
rf.setMinSampleCount(2)# 设置回归精度(对分类问题不适用)
rf.setRegressionAccuracy(0)# 设置是否使用代理(对分类问题不适用)
rf.setUseSurrogates(False)# 设置是否计算变量重要性
rf.setCalculateVarImportance(True)# 训练随机森林分类器
rf.train(data, cv2.ml.ROW_SAMPLE, responses)# 测试分类器
test_data = np.array([[30, 70], [70, 30]], dtype=np.float32)
_, results = rf.predict(test_data)print("Predictions:", results.ravel())

官方文档地址
,点击跳转
https://docs.opencv.org/2.4/modules/ml/doc/decision_trees.html#cvdtreeparams

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/86599.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习怎么学?

推荐这本小白看的《深度学习:从基础到实践(上下册)》。 深度学习:从基础到实践(上下册) 深入浅出的讲述了深度学习的基本概念与理论知识,不涉及复杂的数学内容,零基础小白也能轻松掌…

人员着装识别算法 yolo

人员着装识别系统通过yolo网络模型识别算法,人员着装识别系统算法通过现场安装的摄像头识别工厂人员及工地人员是否按要求穿戴着装,实时监测人员的着装情况,并进行相关预警。目标检测架构分为两种,一种是two-stage,一种…

win10系统rust串口通信实现

一、用cargo创建新工程 命令&#xff1a;cargo new comport use std::env; use std::{thread, time}; use serialport::{DataBits, StopBits, Parity, FlowControl}; use std::io::{self, Read, Write}; use std::time::Duration;fn main() -> io::Result<()> {let m…

Matlab图像处理-乘法运算

乘法运算 两幅图像进行乘法运算主要实现两个功能&#xff1a; 一是可以实现掩模操作&#xff0c;即屏蔽图像的某些部分&#xff1b; 二是如果一幅图像乘以一个常数因子&#xff0c;如果常数因子大于1&#xff0c;将增强图像的亮度&#xff0c;如果因子小于1则会使图像变暗。…

linux top命令的参数解释

参考&#xff1a; https://blog.csdn.net/weixin_45465395/article/details/115728520?ydrefereraHR0cHM6Ly9jbi5iaW5nLmNvbS8%3D 上面的一列是总的CPU使用情况&#xff0c;id是指的总的空闲的 内容 含义 0.0%us 用户空间占用CPU百分比 0.0%sy 内核空间占用CPU百分比 0.0%ni…

ip地址查询进行企业网络数据管理

在现代企业中&#xff0c;数据管理变得越来越重要。企业需要了解和控制其网络上的各种数据流动&#xff0c;以保护敏感信息并提高网络安全性。IP地址查询是一种常用的技术&#xff0c;可以帮助企业有效地管理网络数据&#xff0c;并识别潜在的威胁。 IP地址查询是通过查找特定I…

个人,工作室,公司介绍页带播放视频html源码

导航.zip - 蓝奏云 个人&#xff0c;工作室&#xff0c;公司介绍页带播放视频 源码没有做手机适配&#xff0c;只能在电脑上呈现完美效果。 视频请在源码中自行更改&#xff0c;不建议把视频直接在自己服务器中播放&#xff0c;因为耗宽带&#xff0c;建议上传到一些视频平台…

官方项目《内容示例》中Common UI部分笔记: 1.1 Activatable Widgets

本文主要面向UMG以及Common UI的初学者 文章目录 效果展示概要Activate和Deactivate可见性绑定UI动画设置Common Activatable Widget的默认焦点 效果展示 概要 这个例子非常简单&#xff0c;定义了13个Common Activatable Widget CommonUI_ActivatableWidgets相当于一个容器包…

android Junit4编写自测用例

10多年的android开发经验&#xff0c;一直以来呢&#xff0c;也没有使用过android自带的测试代码编写。说来也惭愧。今天也花了点时间稍微研究了下。还挺简单。接下来就简单的说一下。 新建工程 直接默认新建一个工程&#xff0c;就会有两个目录androidTest和test(unitTest)两…

滑动窗口系列4-Leetcode322题零钱兑换-限制张数-暴力递归到动态规划再到滑动窗口

这个题目是Leecode322的变种&#xff0c;322原题如下&#xff1a; 我们这里的变化是把硬币变成可以重复的&#xff0c;并且只有coins数组中给出的这么多的金币&#xff0c;也就是说有数量限制&#xff1a; package dataStructure.leecode.practice;import java.util.Arrays; i…

[NLP]LLM--transformer模型的参数量

1. 前言 最近&#xff0c;OpenAI推出的ChatGPT展现出了卓越的性能&#xff0c;引发了大规模语言模型(Large Language Model, LLM)的研究热潮。大规模语言模型的“大”体现在两个方面&#xff1a;模型参数规模大&#xff0c;训练数据规模大。以GPT3为例&#xff0c;GPT3的参数量…

手写数字识别之网络结构

目录 手写数字识别之网络结构 数据处理 经典的全连接神经网络 卷积神经网络 手写数字识别之网络结构 无论是牛顿第二定律任务&#xff0c;还是房价预测任务&#xff0c;输入特征和输出预测值之间的关系均可以使用“直线”刻画&#xff08;使用线性方程来表达&#xff09…