深度学习怎么学?

推荐这本小白看的《深度学习:从基础到实践(上下册)》。

深度学习:从基础到实践(上下册)

深入浅出的讲述了深度学习的基本概念与理论知识,不涉及复杂的数学内容,零基础小白也能轻松掌握!

本书从基本概念和理论入手,通过近千张图和简单的例子由浅入深地讲解深度学习的相关知识,且不涉及复杂的数学内容。

本书分为上下两册。上册着重介绍深度学习的基础知识,旨在帮助读者建立扎实的知识储备,主要介绍随机性与基础统计学、训练与测试、过拟合与欠拟合、神经元、学习与推理、数据准备、分类器、集成算法、前馈网络、激活函数、反向传播等内容。下册介绍机器学习的 scikit-learn 库和深度学习的 Keras 库(这两种库均基于 Python 语言),以及卷积神经网络、循环神经网络、自编码器、强化学习、生成对抗网络等内容,还介绍了一些创造性应用,并给出了一些典型的数据集,以帮助读者更好地了解学习。

本书适合想要了解和使用深度学习的人阅读,也可作为深度学习教学培训领域的入门级参考用书。

本书致力于介绍深度学习的基础知识, 以帮助读者建立扎实的知识储备。随着深度学习实践 的推进,你不仅需要对本书课题的背景有充分了解,还需要充分知悉可能需要查阅的资料。

这不是一本关于编程的书。编程很重要, 但是会不可避免地涉及各个细节, 而这些细节与本 书的主旨并无关联。此外, 编程会让你的思考局限于某一个库或者某种语言。尽管这些细节是构 建最终学习网络体系的必要条件, 但是当你想要专注于某一重要理念时, 这些细节可能会让你分 心。与其就循环和目录以及数据结构泛泛而谈, 倒不如以一种独立的方式讨论某种语言和库相关 的所有知识。只要扎实理解了对这些理念,阅读任何库文件都将变得轻而易举。

本书几乎不涉及数学问题

很多人不喜欢复杂的方程式。如果你也是这样,那么本书非常适合你!

本书几乎不涉及复杂的数学运算。如果你不讨厌乘法, 那么本书简直太适合你了, 因为书中 除了乘法,并无任何复杂的运算。

本书所讨论的许多算法都有丰富的理论依据, 并且是经过仔细分析和研究得出的。如果你正 打算变换一种算法以实现新目的, 或者需要独立编写一个新程序, 就必须了解这一点。不过, 在 实践中, 大多数人会用由专家编写的程序。这些程序是经过高度优化的, 并且可以从免费的开源 库中获取。

我们希望能帮助你理解这些技术的原理, 掌握其正确应用, 并懂得如何解读结果, 但无须深 入了解技术背后的数学结构。

如果你喜欢数学或者想了解理论,那么请阅读每一章的“参考资料”部分给出的相关内容。 大部分资料是简洁且能够激发灵感的, 并且给出了作者在本书中刻意省略的细节。如果你不喜欢 数学,可以略过此部分的内容。

本书分上下两册

本书涵盖的内容非常多,因此我们将其分成了上下两册。其中下册是上册内容的拓展和补充。 本书内容是以循序渐进的模式组织的, 因此建议你先读上册, 再去学习下册的内容。如果你有信 心,也可以直接从下册开始阅读。

小编做了一个思维导图,让您更快捷的了解本书的内容。

深度学习:从基础到实践(上册)内容

深度学习:从基础到实践(下册)内容

在第15章、第23章和第24章中,我们将详细讨论机器学习的scikit-learn库以及深度学习的Keras库。这两种库均基于Python语言。我们结合示例代码进行讲解,以期让你对Python库有深度的了解。即使你不喜欢Python,这些程序也会让你对典型的工作流和程序结构有所了解。这些章节中的代码可以在Python手册中找到,并且可用于基于浏览器的Jupyter编程环境。

本书的其他大部分章节也有配套的可选 Python 手册。这些章节针对书中每个计算机生成的数 字给出代码,而且通常使用其中所涉及的技术来生成代码。由于本书的焦点并非在于 Python 语言 和编程(上述章节除外),因此这些手册仅作参考,不再赘述。

机器学习、深度学习和大数据正在世界范围内产生令人意想不到的、快速而深刻的影响。对人类以及人类文化而言,这是一个既复杂又重要的课题。

读完本书,你可以:

  • 设计和构建属于自己的深度学习网络体系;
  • 使用上述网络体系来理解或生成数据;
  • 针对文本、图像和其他类型的数据进行描述性分类;
  • 预测数据序列的下一个值;
  • 研究数据结构;
  • 处理数据,以实现最高效率;
  • 使用你喜欢的任何编程语言和 DL 库;
  • 了解新论文和新理念,并将其付诸实践;
  • 享受与他人进行深度学习讨论的过程。

本书会采用一种严肃而不失友好的讲解方式, 并通过大量图示来帮助你加深理解。同时, 我 们不会在书中堆砌过多的代码,甚至不会使用任何比乘法更复杂的运算。

如果你觉得还不错,欢迎阅读此书!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/86593.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人员着装识别算法 yolo

人员着装识别系统通过yolo网络模型识别算法,人员着装识别系统算法通过现场安装的摄像头识别工厂人员及工地人员是否按要求穿戴着装,实时监测人员的着装情况,并进行相关预警。目标检测架构分为两种,一种是two-stage,一种…

win10系统rust串口通信实现

一、用cargo创建新工程 命令&#xff1a;cargo new comport use std::env; use std::{thread, time}; use serialport::{DataBits, StopBits, Parity, FlowControl}; use std::io::{self, Read, Write}; use std::time::Duration;fn main() -> io::Result<()> {let m…

Matlab图像处理-乘法运算

乘法运算 两幅图像进行乘法运算主要实现两个功能&#xff1a; 一是可以实现掩模操作&#xff0c;即屏蔽图像的某些部分&#xff1b; 二是如果一幅图像乘以一个常数因子&#xff0c;如果常数因子大于1&#xff0c;将增强图像的亮度&#xff0c;如果因子小于1则会使图像变暗。…

linux top命令的参数解释

参考&#xff1a; https://blog.csdn.net/weixin_45465395/article/details/115728520?ydrefereraHR0cHM6Ly9jbi5iaW5nLmNvbS8%3D 上面的一列是总的CPU使用情况&#xff0c;id是指的总的空闲的 内容 含义 0.0%us 用户空间占用CPU百分比 0.0%sy 内核空间占用CPU百分比 0.0%ni…

ip地址查询进行企业网络数据管理

在现代企业中&#xff0c;数据管理变得越来越重要。企业需要了解和控制其网络上的各种数据流动&#xff0c;以保护敏感信息并提高网络安全性。IP地址查询是一种常用的技术&#xff0c;可以帮助企业有效地管理网络数据&#xff0c;并识别潜在的威胁。 IP地址查询是通过查找特定I…

个人,工作室,公司介绍页带播放视频html源码

导航.zip - 蓝奏云 个人&#xff0c;工作室&#xff0c;公司介绍页带播放视频 源码没有做手机适配&#xff0c;只能在电脑上呈现完美效果。 视频请在源码中自行更改&#xff0c;不建议把视频直接在自己服务器中播放&#xff0c;因为耗宽带&#xff0c;建议上传到一些视频平台…

官方项目《内容示例》中Common UI部分笔记: 1.1 Activatable Widgets

本文主要面向UMG以及Common UI的初学者 文章目录 效果展示概要Activate和Deactivate可见性绑定UI动画设置Common Activatable Widget的默认焦点 效果展示 概要 这个例子非常简单&#xff0c;定义了13个Common Activatable Widget CommonUI_ActivatableWidgets相当于一个容器包…

android Junit4编写自测用例

10多年的android开发经验&#xff0c;一直以来呢&#xff0c;也没有使用过android自带的测试代码编写。说来也惭愧。今天也花了点时间稍微研究了下。还挺简单。接下来就简单的说一下。 新建工程 直接默认新建一个工程&#xff0c;就会有两个目录androidTest和test(unitTest)两…

滑动窗口系列4-Leetcode322题零钱兑换-限制张数-暴力递归到动态规划再到滑动窗口

这个题目是Leecode322的变种&#xff0c;322原题如下&#xff1a; 我们这里的变化是把硬币变成可以重复的&#xff0c;并且只有coins数组中给出的这么多的金币&#xff0c;也就是说有数量限制&#xff1a; package dataStructure.leecode.practice;import java.util.Arrays; i…

[NLP]LLM--transformer模型的参数量

1. 前言 最近&#xff0c;OpenAI推出的ChatGPT展现出了卓越的性能&#xff0c;引发了大规模语言模型(Large Language Model, LLM)的研究热潮。大规模语言模型的“大”体现在两个方面&#xff1a;模型参数规模大&#xff0c;训练数据规模大。以GPT3为例&#xff0c;GPT3的参数量…

手写数字识别之网络结构

目录 手写数字识别之网络结构 数据处理 经典的全连接神经网络 卷积神经网络 手写数字识别之网络结构 无论是牛顿第二定律任务&#xff0c;还是房价预测任务&#xff0c;输入特征和输出预测值之间的关系均可以使用“直线”刻画&#xff08;使用线性方程来表达&#xff09…

爱校对发布全新PDF校对工具,为用户带来更为便捷的校正体验

随着数字化文档使用的普及&#xff0c;PDF格式已经成为最为广泛使用的文件格式之一。为满足广大用户对于高效、准确PDF文档校对的需求&#xff0c;爱校对团队经过深入研发&#xff0c;正式推出全新的PDF校对工具&#xff01; 这一全新工具针对PDF文件格式进行了深度优化&#…