手写数字识别之优化算法:观察Loss下降的情况判断合理的学习率

目录

手写数字识别之优化算法:观察Loss下降的情况判断合理的学习率

前提条件

设置学习率

学习率的主流优化算法


手写数字识别之优化算法:观察Loss下降的情况判断合理的学习率

我们明确了分类任务的损失函数(优化目标)的相关概念和实现方法,本节我们依旧横向展开"横纵式"教学法,如 图1 所示,本节主要探讨在手写数字识别任务中,使得损失达到最小的参数取值的实现方法。

图1:“横纵式”教学法 — 优化算法



前提条件

在优化算法之前,需要进行数据处理、设计神经网络结构,代码与上一节保持一致,如下所示。

# 加载相关库
import os
import random
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import numpy as np
from PIL import Image
import gzip
import json# 定义数据集读取器
def load_data(mode='train'):# 读取数据文件datafile = './work/mnist.json.gz'print('loading mnist dataset from {} ......'.format(datafile))data = json.load(gzip.open(datafile))# 读取数据集中的训练集,验证集和测试集train_set, val_set, eval_set = data# 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLSIMG_ROWS = 28IMG_COLS = 28# 根据输入mode参数决定使用训练集,验证集还是测试if mode == 'train':imgs = train_set[0]labels = train_set[1]elif mode == 'valid':imgs = val_set[0]labels = val_set[1]elif mode == 'eval':imgs = eval_set[0]labels = eval_set[1]# 获得所有图像的数量imgs_length = len(imgs)# 验证图像数量和标签数量是否一致assert len(imgs) == len(labels), \"length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(labels))index_list = list(range(imgs_length))# 读入数据时用到的batchsizeBATCHSIZE = 100# 定义数据生成器def data_generator():# 训练模式下,打乱训练数据if mode == 'train':random.shuffle(index_list)imgs_list = []labels_list = []# 按照索引读取数据for i in index_list:# 读取图像和标签,转换其尺寸和类型img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')label = np.reshape(labels[i], [1]).astype('int64')imgs_list.append(img) labels_list.append(label)# 如果当前数据缓存达到了batch size,就返回一个批次数据if len(imgs_list) == BATCHSIZE:yield np.array(imgs_list), np.array(labels_list)# 清空数据缓存列表imgs_list = []labels_list = []# 如果剩余数据的数目小于BATCHSIZE,# 则剩余数据一起构成一个大小为len(imgs_list)的mini-batchif len(imgs_list) > 0:yield np.array(imgs_list), np.array(labels_list)return data_generator# 定义模型结构
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)# 定义一层全连接层,输出维度是10self.fc = Linear(in_features=980, out_features=10)# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出# 卷积层激活函数使用Relu,全连接层激活函数使用softmaxdef forward(self, inputs):x = self.conv1(inputs)x = F.relu(x)x = self.max_pool1(x)x = self.conv2(x)x = F.relu(x)x = self.max_pool2(x)x = paddle.reshape(x, [x.shape[0], -1])x = self.fc(x)return x

设置学习率

在深度学习神经网络模型中,通常使用标准的随机梯度下降算法更新参数,学习率代表参数更新幅度的大小,即步长。当学习率最优时,模型的有效容量最大,最终能达到的效果最好。学习率和深度学习任务类型有关,合适的学习率往往需要大量的实验和调参经验。探索学习率最优值时需要注意如下两点:

  • 学习率不是越小越好。学习率越小,损失函数的变化速度越慢,意味着我们需要花费更长的时间进行收敛,如 图2 左图所示。
  • 学习率不是越大越好。只根据总样本集中的一个批次计算梯度,抽样误差会导致计算出的梯度不是全局最优的方向,且存在波动。在接近最优解时,过大的学习率会导致参数在最优解附近震荡,损失难以收敛,如 图2 右图所示。


图2: 不同学习率(步长过大/过小)的示意图
 

在训练前,我们往往不清楚一个特定问题设置成怎样的学习率是合理的,因此在训练时可以尝试调小或调大,通过观察Loss下降的情况判断合理的学习率,设置学习率的代码如下所示。

#仅优化算法的设置有所差别
def train(model):model.train()#调用加载数据的函数train_loader = load_data('train')#设置不同初始学习率opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())# opt = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters())# opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())EPOCH_NUM = 10for epoch_id in range(EPOCH_NUM):for batch_id, data in enumerate(train_loader()):#准备数据images, labels = dataimages = paddle.to_tensor(images)labels = paddle.to_tensor(labels)#前向计算的过程predicts = model(images)#计算损失,取一个批次样本损失的平均值loss = F.cross_entropy(predicts, labels)avg_loss = paddle.mean(loss)#每训练了100批次的数据,打印下当前Loss的情况if batch_id % 200 == 0:print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))#后向传播,更新参数的过程avg_loss.backward()# 最小化loss,更新参数opt.step()# 清除梯度opt.clear_grad()#保存模型参数paddle.save(model.state_dict(), 'mnist.pdparams')#创建模型    
model = MNIST()
#启动训练过程
train(model)

学习率的主流优化算法

学习率是优化器的一个参数,调整学习率看似是一件非常麻烦的事情,需要不断的调整步长,观察训练时间和Loss的变化。经过研究员的不断的实验,当前已经形成了四种比较成熟的优化算法:SGD、Momentum、AdaGrad和Adam,效果如 图3 所示。


图3: 不同学习率算法效果示意图
 

  • SGD: 随机梯度下降算法,每次训练少量数据,抽样偏差导致的参数收敛过程中震荡。

  • Momentum: 引入物理“动量”的概念,累积速度,减少震荡,使参数更新的方向更稳定。

每个批次的数据含有抽样误差,导致梯度更新的方向波动较大。如果我们引入物理动量的概念,给梯度下降的过程加入一定的“惯性”累积,就可以减少更新路径上的震荡,即每次更新的梯度由“历史多次梯度的累积方向”和“当次梯度”加权相加得到。历史多次梯度的累积方向往往是从全局视角更正确的方向,这与“惯性”的物理概念很像,也是为何其起名为“Momentum”的原因。类似不同品牌和材质的篮球有一定的重量差别,街头篮球队中的投手(擅长中远距离投篮)喜欢稍重篮球的比例较高。一个很重要的原因是,重的篮球惯性大,更不容易受到手势的小幅变形或风吹的影响。

  • AdaGrad: 根据不同参数距离最优解的远近,动态调整学习率。学习率逐渐下降,依据各参数变化大小调整学习率。

通过调整学习率的实验可以发现:当某个参数的现值距离最优解较远时(表现为梯度的绝对值较大),我们期望参数更新的步长大一些,以便更快收敛到最优解。当某个参数的现值距离最优解较近时(表现为梯度的绝对值较小),我们期望参数的更新步长小一些,以便更精细的逼近最优解。类似于打高尔夫球,专业运动员第一杆开球时,通常会大力打一个远球,让球尽量落在洞口附近。当第二杆面对离洞口较近的球时,他会更轻柔而细致的推杆,避免将球打飞。与此类似,参数更新的步长应该随着优化过程逐渐减少,减少的程度与当前梯度的大小有关。根据这个思想编写的优化算法称为“AdaGrad”,Ada是Adaptive的缩写,表示“适应环境而变化”的意思。RMSProp是在AdaGrad基础上的改进,学习率随着梯度变化而适应,解决AdaGrad学习率急剧下降的问题。

  • Adam: 由于动量和自适应学习率两个优化思路是正交的,因此可以将两个思路结合起来,这就是当前广泛应用的算法。

说明:

每种优化算法均有更多的参数设置。理论最合理的未必在具体案例中最有效,所以模型调参是很有必要的,最优的模型配置往往是在一定“理论”和“经验”的指导下实验出来的。


我们可以尝试选择不同的优化算法训练模型,观察训练时间和损失变化的情况,代码实现如下。

#仅优化算法的设置有所差别
def train(model):model.train()#调用加载数据的函数train_loader = load_data('train')#四种优化算法的设置方案,可以逐一尝试效果opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())# opt = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9, parameters=model.parameters())# opt = paddle.optimizer.Adagrad(learning_rate=0.01, parameters=model.parameters())# opt = paddle.optimizer.Adam(learning_rate=0.01, parameters=model.parameters())EPOCH_NUM = 3for epoch_id in range(EPOCH_NUM):for batch_id, data in enumerate(train_loader()):#准备数据images, labels = dataimages = paddle.to_tensor(images)labels = paddle.to_tensor(labels)#前向计算的过程predicts = model(images)#计算损失,取一个批次样本损失的平均值loss = F.cross_entropy(predicts, labels)avg_loss = paddle.mean(loss)#每训练了100批次的数据,打印下当前Loss的情况if batch_id % 200 == 0:print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))#后向传播,更新参数的过程avg_loss.backward()# 最小化loss,更新参数opt.step()# 清除梯度opt.clear_grad()#保存模型参数paddle.save(model.state_dict(), 'mnist.pdparams')#创建模型    
model = MNIST()
#启动训练过程
train(model)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/86679.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开始MySQL探索——数据库概述

计算机语言 计算机语言概述 计算机语言(Computer Language)可以简单的理解为一种计算机和人都能识别的语言。 机器语言 汇编语言 高级语言 机器语言 汇编语言 高级语言 SQL语言基础 SQL的概述 SQL全称:Structured Query Language&…

4-1-netty

非阻塞io 服务端就一个线程,可以处理无数个连接 收到所有的连接都放到集合channelList里面 selector是有事件集合的 对server来说优先关注连接事件 遍历连接事件

【Acwing906】区间分组贪心策略证明与题解

题目描述 贪心策略 先按照左端点对所有区间进行排序,然后从左到右遍历每一个区间,如果遍历到的区间能够加入现在已经存在的某一个区间组中,则加入,否则,创建新的区间组,并将这个区间加入。 具体的方案是…

MongoDB 双机热备那篇文章是 “毒”

开头还是介绍一下群,如果感兴趣polardb ,mongodb ,mysql ,postgresql ,redis ,Oracle ,Oceanbase 等有问题,有需求都可以加群群内有各大数据库行业大咖,CTO,可以解决你的问题。加群请加微信号 liuaustin3 (…

yo!这里是Linux基础开发工具介绍

目录 前言 基础开发工具 yum vim 1.基本介绍 2.基本操作 3.正常模式常用命令 4.底行模式常用命令 gcc/g gdb 1.基本介绍 2.常用操作 make/Makefile 1.背景 2.介绍 3.使用 git 1.介绍 2.操作 进度条程序简单实现 后记 前言 在学完初步的基础指令及权限控…

浏览器输入一个URL之后发生了什么?

URL解析DNS解析TCP连接TSL连接HTTP请求TCP挥手接收并解析响应 URL 解析 主要分为: 协议,eg http,https域名或者ip地址,eg www.baidu.com 域名相对于ip地址来说,更方便人们记忆,但是实际的网络传输中使用的是ip地址 端…

c++查漏补缺(1)

目录 1.explicit关键字 2.static关键字 3.友元函数 1.explicit关键字 exeplicit关键字是在构造函数要使用的关键字。可以防止“隐式构造”&#xff0c;例如&#xff1a; #include<iostream>using namespace std;class Date { public:explicit Date(int year, int mo…

当我焦虑时,我从CSDN的博主身上学到了什么?

文章目录 前言一、思考为什么会产生差距1.1 懒惰1.2 没有合理的规划学习时间 二、我该如何做&#xff1f;2.1 认真生活规律作息2.2 做事就是0和1 结语 前言 我们在学习的过程当中总会遇到一些比我们自己优秀的人&#xff0c;不论你是在更好的985或211院校学习&#xff0c;还是…

PHP8函数的引用和取消-PHP8知识详解

今天分享的是php8函数的引用和取消&#xff0c;不过在PHP官方的参考手册中&#xff0c;已经删除了此类教程。 1、函数的引用 在PHP8中不管是自定义函数还是内置函数&#xff0c;都可以直接简单的通过函数名调佣。函数的引用大致有下面3种&#xff1a; 1.1、如果是PHP的内置函…

C#_委托详解

委托是什么&#xff1f; 字面理解&#xff1a;例如A要建一栋别墅&#xff0c;找到B建筑施工队&#xff0c;请B来建筑别墅。 委托类型规定方法的签名&#xff08;方法类型&#xff09;&#xff1a;返回值类型、参数类型、个数、顺序。 委托变量可以用来存储方法的引用&#x…

Spring -学习笔记

文章目录 1. Spring介绍1.1 Spring的体系结构 2.DI/Ioc&#xff08;依赖注入/控制反转&#xff09;2.1 依赖及注解说明1. lombok2. spring-context 2.2 Bean和Spring 上下文的配置方式方式1&#xff1a;基于xml文件的配置方法2&#xff1a; 基于java注解配置bean方法3&#xff…