1. 卷积原理

① 卷积核不停的在原图上进行滑动,对应元素相乘再相加。

② 下图为每次滑动移动1格,然后再利用原图与卷积核上的数值进行计算得到缩略图矩阵的数据,如下图右所示。

import torch
import torch.nn.functional as Finput = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]])kernel = torch.tensor([[1, 2, 1],[0, 1, 0],[2, 1, 0]])print(input.shape)
print(kernel.shape)
input = torch.reshape(input, (1,1,5,5))
kernel = torch.reshape(kernel, (1,1,3,3))
print(input.shape)
print(kernel.shape)output = F.conv2d(input, kernel, stride=1)
print(output)

结果:

 效果:

import torch
import torch.nn.functional as Finput = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]])kernel = torch.tensor([[1, 2, 1],[0, 1, 0],[2, 1, 0]])print(input.shape)
print(kernel.shape)
input = torch.reshape(input, (1,1,5,5))
kernel = torch.reshape(kernel, (1,1,3,3))
print(input.shape)
print(kernel.shape)output2 = F.conv2d(input, kernel, stride=2)  # 步伐为2
print(output2)

结果 :

import torch
import torch.nn.functional as Finput = torch.tensor([[1, 2, 0, 3, 1],[0, 1, 2, 3, 1],[1, 2, 1, 0, 0],[5, 2, 3, 1, 1],[2, 1, 0, 1, 1]])kernel = torch.tensor([[1, 2, 1],[0, 1, 0],[2, 1, 0]])print(input.shape)
print(kernel.shape)
input = torch.reshape(input, (1,1,5,5))
kernel = torch.reshape(kernel, (1,1,3,3))
print(input.shape)
print(kernel.shape)output3 = F.conv2d(input, kernel, stride=1, padding=1)  # 周围只填充一层
print(output3)

效果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/87164.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023.08.27 学习周报

文章目录 摘要文献阅读1.题目2.重点3.引言4.方法5.实验结果6.结论 深度学习Majorization-Minimization算法1.基本思想2.要求3.示意图 总结 摘要 This week, I read a computer science on the prediction of atmospheric pollutants in urban environments based on coupled d…

【Go 基础篇】Go语言中的自定义错误处理

错误是程序开发过程中不可避免的一部分,而Go语言以其简洁和高效的特性闻名。在Go中,自定义错误(Custom Errors)是一种强大的方式,可以为特定应用场景创建清晰的错误类型,以便更好地处理和调试问题。本文将详…

4年经验来面试20K的测试岗,一问三不知,我还真不如去招应届生...

公司前段缺人,也面了不少测试,结果竟然没有一个合适的。一开始瞄准的就是中级的水准,也没指望来大牛,提供的薪资在10-20k,面试的人很多,但平均水平很让人失望。看简历很多都是4年工作经验,但面试…

集成学习:Bagging, Boosting,Stacking

目录 集成学习 一、bagging 二、boosting Bagging VS Boosting 1.1 集成学习是什么? Bagging Boosting Stacking 总结 集成学习 好比人做出一个决策时,会从不同方面,不同角度,不同层次去思考(多个自我&am…

RTSP/Onvif协议安防视频平台EasyNVR录像模式自定义操作

TSINGSEE青犀视频安防监控平台EasyNVR可支持设备通过RTSP/Onvif流媒体协议接入,并能对接入的视频流进行处理与多端分发,包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等多种格式。在智慧安防等视频监控场景中,EasyNVR可提供视频实时监控直播…

URI和URL和URN区别

URI、URL 和 URN 是一系列从不同角度来看待资源标识和定位的概念。虽然它们有一些重叠,但每个概念都强调了不同的方面。 URI(Uniform Resource Identifier):URI 是一个通用的术语,用于标识和定位资源。它是一个抽象的概…

redis学习笔记 - 进阶部分

文章目录 redis单线程如何处理并发的客户端,以及为何单线程快?redis的发展历程:redis单线程和多线程的体现:redis3.x单线程时代但性能很快的主要原因:redis4.x开始引入多线程:redis6/redis7引入多线程IO&am…

响应式web-PC端web与移动端web(H5)兼容适配 选型方案

背景 项目需要,公司已经有一套PC端web,需要做一套手机端浏览器可用的,但是又想兼容pc端,适配的web项目。 以下是查阅到响应布局现成的开源模版。根据自己技术栈,vue2,js来搜索相关的开源项目。 RuoYi 使用若依快速…

ethers.js2:provider提供商

1、Provider类 Provider类是对以太坊网络连接的抽象,为标准以太坊节点功能提供简洁、一致的接口。在ethers中,Provider不接触用户私钥,只能读取链上信息,不能写入,这一点比web3.js要安全。 除了之前介绍的默认提供者d…

Kaniko在containerd中无特权快速构建并推送容器镜像

目录 一、kaniko是什么 二、kaniko工作原理 三、kanijo工作在Containerd上 基于serverless的考虑,我们选择了kaniko作为镜像打包工具,它是google提供了一种不需要特权就可以构建的docker镜像构建工具。 一、kaniko是什么 kaniko 是一种在容器或 Kube…

单例模式的相关知识

饿汉模式 package Thread; class Singleton{private static Singleton instance new Singleton();public static Singleton getInstance(){return instance;}private Singleton(){} }public class demo1 {public static void main(String[] args) {Singleton S1 Singleton.ge…

华为数通方向HCIP-DataCom H12-821题库(单选题:61-80)

第61题 关于 BGP 的Keepalive报文消息的描述,错误的是 A、Keepalive周期性的在两个BGP邻居之间发送 B、Keepalive报文主要用于对等路由器间的运行状态和链路的可用性确认 C、Keepalive 报文只包含一个BGP数据报头 D、缺省情况下,Keepalive 的时间间隔是180s 答案&#xff…