利用深度蛋白质序列嵌入方法通过 Siamese neural network 对 virus-host PPIs 进行精准预测【Patterns,2022】

在这里插入图片描述

研究背景:

  1. 病毒感染可以导致多种组织特异性损伤,所以 virus-host PPIs 的预测有助于新的治疗方法的研究;
  2. 目前已有的一些 virus-host PPIs 鉴定或预测方法效果有限(传统实验方法费时费力、计算方法要么基于蛋白结构或基因,要么基于手动特征工程的机器学习);
  3. DL在PPIs预测中的应用愈加广泛,包括特征嵌入、autoencoder、LSTM等,而最近几年基于NLP领域的一些基于迁移学习的方法、基于 transformer 的预训练模型的应用等在 PPIs 预测中展现了更好的表现;
  4. 本文中,作者提出了一个基于 ProtBERT 模型的深度学习方法,名为 STEP(据作者所知,这是第一个用预训练 transformer 模型获取序列嵌入特征用于 PPIs 预测的方法);

数据集构成:

在这里插入图片描述

数据集构成
Tsukiyama22,383 positive PPIs (5,882 human proteins & 996 virus proteins)
Guo5943 positive PPIs
Sun36,545 positive PPIs, 36,323 negative PPIs
  1. Tsukiyama 的数据集是 human-virus PPIs,正负样本数目比为1:10,负样本构造方法是:dissimilarity-based negative sampling method。此外,将整个数据集中的20%取出作为独立的验证集 (independent test data);
  2. Guo 的数据集是 Yeast PPIs,其中负样本PPIs的数目和正样本PPIs一样,构建方法有三种:1). 正样本蛋白随机组对;2). 不同亚细胞定位的蛋白进行组对;3). 利用人为构造(将已有蛋白的序列进行打乱)的蛋白序列进行组对;
  3. Sun 的数据集是 Human PPIs,从 HPRD 数据库中整理得到的,负样本构建方法是 “不同亚细胞定位随机组对” 和 “Negatome database 中的非互作蛋白”;

研究思路和方法:

在这里插入图片描述
代码:https://github.com/SCAI-BIO/STEP
从示意图中可以看出,STEP方法的整体结构是很简单的,所以根据上述示意图对主要代码进行简述(代码主要来自src/modeling/ProtBertPPIModel.py):

1. __single_step()方法从宏观上规定了STEP运行过程:

在这里插入图片描述

上面截图为ProtBertPPIModel.py的314行-327行,这段代码规定了STEP的运行顺序,其中我觉得比较重要的点我用红线标了出来:

  1. 该段代码定义了一个__single_step(self, batch)的方法,其输入是batch,根据315行可以确定batch是由inputs_A, input_B, targets三部分构成的。
  2. 之后的316和317行表示将 inputs_Ainputs_B输入到self.forward()方法中得到model_out_Amodel_out_B,从这一步可以推测出inputs_A是由input_ids, token_type_ids, attention_mask构成。
  3. self.forward()的输出作为下一步self.classifier()方法的输入,之后得到classifier_output(即预测输出),之后再利用self.loss_bce_with_integrated_sigmoid()方法计算损失,最终__signle_step()方法返回(loss, trues, preds)(即损失值、真实标签和预测值)。

self.forward()方法定义了ProtBERT模型如何对输入的蛋白序列进行编码的:

在这里插入图片描述

首先蛋白A和蛋白B的序列由氨基酸构成的字符串,不能直接输入到神经网络中进行训练,需要将需要将字符串映射为数值型数据。这一步就是干这个事的,也就是用预训练的ProtBERT模型将蛋白质序列进行向量化表示。

  1. input_ids, token_type_ids, attention_mask 输入self.ProtBertBFD()方法之后得到word_embeddings,之后通过self.pool_strategy()方法对word_embedding进行池化操作,而这个self.pool_strategy()(如下图所示),这里的features指的就是{"token_embeddings": word_embeddings, "cls_token_embeddings": word_embeddings[:, 0], "attention_mask": attention_mask},而self.pool_strategy()的输出output_vectors则计算了三种情况下的池化结果。

在这里插入图片描述

  1. 这里存在的疑问是input_ids, token_type_ids, attention_mask究竟指的是什么?
    根据 src/data/VirHostNetDataset.py 中(下图所示)可以看出,input_ids, token_type_ids, attention_mask是由self.tokenizer()方法得到的,而self.tokenizer()方法指的是预训练模型Roslab/prot_bert_bfd中的tokenizer,这三个数据可以从tokenizer中得到(可见 https://huggingface.co/Rostlab/prot_bert_bfd)。

在这里插入图片描述

self.ProtBertBFD()加载预训练PortBERT模型:

在这里插入图片描述

正如上面所述,预训练模型ProtBERT可以直接从 hugging face 上下载得到,通过BertModel.from_pretrained()方法进行加载即可(红框所注部分)。

self.classifier()对蛋白A和蛋白B特征进行哈达玛积,并进行预测分类:

在这里插入图片描述

将通过self.forward()方法得到的蛋白A和蛋白B的特征进行哈达玛积,并将结果输入到self.classification_head()方法中即可得到预测结果(其中self.classification_head()方法在上面的__build_model()方法中)。

大概情况就是这样(有错之处,还请指出,及时更改),其他细节详见代码。


实验结果及讨论:

1. Comparative evaluation of STEP with state-of-the-art work:

方法特征+模型
Tsukiyama (2021)word2vec sequence embedding + LSTM-PHV Siamese model (5-fold-cv)
Yang (2019)doc2vec + RF classifier
Guo (2008)auto covariance + SVM (5-fold-cv)
Sun (2017)AC + CT + autoencoder (10-fold-cv)
Chen (2019)Siamese residual RCNN (5-fold-cv)
STEP (2022)ProtBERT + Siamese Neural Network

1.1 PPIs 预测任务上各方法的预测表现:

在这里插入图片描述

1.2 在 PPIs 互作类型和结合亲和力任务上,各方法的预测表现:

  1. PPIs 互作类型预测:
       数据集:SHS27k dataset(由Chen对STRING数据库整理得到),包括 26,944 PPIs,涉及7种互作类型: activation (16.70%), binding (16.70%), catalysis (16.70%), expression (5.84%), inhibition (16.70%), post-translational modification (ptmod; 10.66%), and reaction (16.70%)。
  2. PPIs 结合亲和力预测:
       数据来自 SKEMPI 数据库,包括 2,792 突变蛋白复合物的结合亲和力(参考Chen的方法对数据集进行了处理)。
  3. 模型修改:
       1). 对于PPIs预测任务(多分类任务),将 bottleneck classification head 替换为三个一样的线性层(dropout和ReLU不变),将损失函数换成 cross-entropy,sigmoid 激活函数换成 Softmax。
       2). 对于PPIs 结合亲和力预测(回归问题),将损失函数替换成 mean squared error loss,并将预测值缩放到0-1之间。
  4. 做10-fold-cross validation。

在这里插入图片描述

1.3 结论1:

  1. Table1 demonstrated at least state-of-the-art performance of STEP.
  2. STEP compared on exactly the same data published by Tsukiyama performs similar to their LSTM-PHV method and better than the approach by Yang.
  3. TableS4, we also evaluated our STEP architecture on two additional tasks, namely, PPI type prediction and a PPI binding affinity estimation using the data and the CV setup provided by Chen. For both tasks, we reached at least state-of-the-art per- formances with our approach.

2. Prediction of JCV major capsid protein VP1 interactions:

  1. We split the brain tissue-specific interactome dataset including all positive and pseudo-negative interactions into training (60%), validation (20%), and test (20%) datasets.
  2. After tuning on the validation set, we used our best model to make predictions on the hold-out test set.
  3. 之所以用 brain tissue-specific interactome 的数据,是因为 JCV 可以透过血脑屏障入脑。

2.1 超参数优化(模型微调):

在这里插入图片描述

2.2 STEP-Brain对于脑组织特异性互作蛋白的预测表现:

在这里插入图片描述

2.3 STEP-Brain对于JCV major capsid protein VP1 互作蛋白的预测结果(top10):

We used this STEP-brain model to predict interactions of the JCV major capsid protein VP1 with all human receptors.

在这里插入图片描述

2.4 JCV major capsid protein VP1 被预测的互作蛋白富集分析结果:

在这里插入图片描述

Altogether, we observed a strong enrichment of VP1 interactions predicted with olfactory, serotonin, amine, taste, and acetylcholine receptors.

3. Prediction of SARS-CoV-2 spike glycoprotein interactions:

3.1 训练思路:

We performed a nested CV procedure on the given SARS-CoV-2 interactions dataset. We used five outer and five inner loops to validate the generalization performance and while performing the hyperparameter optimization in the inner loop. In each outer run, we created a stratified split of the interactome into train (4/5) and test (1/5) datasets. In the nested run, we further split the outer train dataset into train (1/5) and validation (1/5) datasets, which were used to optimize the hyperparameters of the model using the respective training data.

关于 Nested Cross Validation 的示意图(图片来自网络):
在这里插入图片描述

3.2 超参数优化:

在这里插入图片描述

3.3 STEP-virus-host model 的 Nested CV 测试结果:

在这里插入图片描述
在这里插入图片描述

3.4 STEP-virus-host model 预测SARS-CoV-2 spike 蛋白的人类受体结果:

STEP-virus-host model obtained from the best outer fold to predict interactions of the SARS-CoV-2 spike pro- tein (alpha, delta, and omicron variants) with all human receptors that were not already contained in VirHostNet.
在这里插入图片描述

  1. For all virus variants the sigma intracellular receptor 2 (GeneCards:TMEM97; UniProt:Q5BJF2) was the only one predicted with an outstanding high probability (of >70% in all cases).
  2. The sigma 1 and 2 receptors are thought to play a role in regulating cell survival, morphology, and differentiation.
  3. In addition, the sigma receptors have been proposed to be involved in the neuronal transmission of SARS- CoV-2. They have been suggested as targets for therapeutic intervention.
  4. Our results suggest that the antiviral effect observed in cell lines treated with sigma receptor binding ligands might be due to a modulated binding of the spike protein, thus inhibiting virus entry into cells.

4. 讨论:

  1. 利用预训练ProtBERT和Siamese neural network架构仅根据蛋白质以及序列来预测 PPIs,结果表明该方法(STEP)比之前的基于LSTM等原理的方法效果更优;
  2. 通过将STEP进行超参数优化得到的模型可以很好地预测脑组织特异性PPIs以及virus-host PPIs的预测;
  3. 微调的模型 STEP-Brain 和 STEP-virus-host 可分别用于预测 JCV major capsid protein VP1 互作蛋白以及 SARS-CoV-2 spike glycoprotein 互作受体;
  4. 作者首次提出将预训练大模型用于PPIs预测,意义还是很重大的。但是整体上来看,尽管模型比较简单,但是对计算资源的要求很高,(每一次微调需要 2xA100GPU with VMEM of 32GB,尽管可以并行,但是微调116次,作者用了10days的时间)
    【本文章给我的启发就是,没有足够的计算资源,大模型还是不要搞得好😮‍💨】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/87553.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深眸科技创新赋能视觉应用产品,以AI+机器视觉解决行业应用难题

随着工业4.0时代的加速到来,我国工业领域对于机器视觉技术引导的工业自动化和智能化需求持续上涨,国内机器视觉行业进入快速发展黄金期,但需求广泛出现同时也对机器视觉产品的检测能力提出了更高的要求。 传统机器视觉由人工分析图像特征&am…

TCP协议的重点知识点

TCP协议的重点知识点 TCP(传输控制协议)是一种面向连接、可靠的数据传输协议,工作在传输层,提供可靠的字节流服务。它是互联网协议栈中最重要、最复杂的协议之一,也是面试中常被问到的知识点。本文将详细介绍TCP协议的各个重要概念。 TCP基本特性 TCP主要具有以下基本特性: …

XML—DTD、 Schema

目录 DTD是什么? DTD有什么用途? DTD与XML有什么联系? DTD原理图 外部DTD DTD文件book.dtd: 使用外部DTD文件的XML文件 PCDATA XML 文档构建模块 一、元素 1、元素声明 ①、有元素: ②、空元素: ③、ANY…

JVM 判定对象是否死亡的两种方式

引用计数法:(脑门刻字法)和 可达性分析 引用计数算法 引用计数器的算法是这样的:在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一…

Linux 桌面上的 Firefox 面临着大问题

导读毫无疑问,无论是在桌面、笔记本电脑还是移动设备上,浏览器都是任何操作系统中最重要的应用之一。 如果没有一个功能强大、快速且稳定的浏览器,操作系统的实用性将大幅度降低,以至于我相当确定,如果一个操作系统没有…

将Spring boot 项目部署到tomcat服务艰难

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z X Y Z

基于AVR128单片机智能传送装置

一、系统方案 1、板载可变电阻(电位器)R29的电压作为处理器ATmega128的模数转换模块中单端ADC0的模拟信号输入(跳线JP13短接)。 2、调节电位器,将改变AD转换接口ADC0的模拟信号输入,由处理器完成ADC0的A/D转…

释放 ChatGPT 的价值:5 个专家提示

随着近来ChatGPT的热议,人工智能技术被推上风口浪尖,由此以数字化技术为基础的数字营销也再次受到了不小的关注,但是营销的本质从来都没有变过,今天我们聊下ChatGPT无论如何演进,人工智能无论变得多么先进,…

JVM知识点(一)

1、JVM基础概念 (1)JVM、JRE、JDK JRE:JVM基本类库组成的运行环境就是JRE。JVM自己是无法完成一次编译,处处运行的,需要有一个基本类库告诉JVM如何操作运行,如如何操作文件,连接网络等&#x…

xfs ext4 结合lvm 扩容、缩容 —— 筑梦之路

ext4 文件系统扩容、缩容操作 扩容系统根分区 根文件系统在 /dev/VolGroup/lv_root 逻辑卷上,文件系统类型为ext4,大小为10G,现在要将其扩容成20G。 给空闲空间分区# 调整分区类型为LVM,也就是8e类型 fdisk /dev/sdb# 选定分区后使…

微前沿 | 第1期:强可控视频生成;定制化样本检索器;用脑电重建视觉感知;大模型鲁棒性评测

欢迎阅读我们的新栏目——“微前沿”! “微前沿”汇聚了微软亚洲研究院最新的创新成果与科研动态。在这里,你可以快速浏览研究院的亮点资讯,保持对前沿领域的敏锐嗅觉,同时也能找到先进实用的开源工具。 本期内容速览 01. 强可…

ChatGPT 随机动态可视化图表分析

动态可视化图表分析实例如下图: 这样的动态可视化图表可以使用ChatGPT OpenAI 来实现。 给ChatGPT发送指令: 你现在是一个数据分析师,请使用HTML,JS,Echarts,来完成一个动态条形图,条形图方向横向,数据可以随机生成,并且随机生成10个不同的商品名称,每个类别分别用…