- 面向对象思想概述
- 举例
- 特点
- 类和对象
- 什么是类
- 什么是对象
- 类与对象的关系
- 类的定义
- 事物与类的对比
- 类的定义格式
- 对象的使用
- 对象的使用格式
- 成员变量的默认值
- 对象内存图
- 一个对象,调用一个方法内存图
- 两个对象,调用同一方法内存图
- 一个引用,作为参数传递到方法中内存图
- 成员变量和局部变量区别
- 封装
- 封装概述
- 概述
- 原则
- 封装的步骤
- 封装的操作——private关键字
- private的含义
- private的使用格式
- 封装优化1——this关键字
- this的含义
- this使用格式
- 封装优化2——构造方法
- 构造方法的定义格式
- 注意事项
- 标准代码——JavaBean
- 封装概述
- 继承
- 概述
- 由来
- 定义
- 好处
- 继承的格式
- 继承后的特点
- 成员变量
- 成员变量不重名
- 成员变量重名
- 成员方法
- 成员方法不重名
- 成员方法重名 ——重写(Override)
- 重写的应用
- 注意事项
- 构造方法
- 成员变量
- super 和this
- 父类空间优先于子类对象产生
- super和this的含义
- super和this的用法
- 继承的特点
- 概述
- 多态(接口之后)
- 概述
- 引入
- 定义
- 前提【重点】
- 多态的体现
- 多态的好处
- 引用类型转换
- 向上转型
- 向下转型
- 为什么要转型
- 转型的异常
- 概述
面向对象思想概述
Java语言是一种面向对象的程序设计语言,而面向对象思想是一种程序设计思想,我们在面向对象思想的指引下,使用Java语言去设计、开发计算机程序。 这里的对象泛指现实中一切事物,每种事物都具备自己的属性和行为。面向对象思想就是在计算机程序设计过程中,参照现实中事物,将事物的属性特征、行为特征抽象出来,描述成计算机事件的设计思想。 它区别于面向过程思想,强调的是通过调用对象的行为来实现功能,而不是自己一步一步的去操作实现。
举例
洗衣服:
- 面向过程:把衣服脱下来 -->找一个盆-->放点洗衣粉-->加点水-->浸泡10分钟-->揉一揉-->清洗衣服-->拧干-->晾
起来 - 面向对象:把衣服脱下来 -->打开全自动洗衣机-->扔衣服-->按钮-->晾起来
区别 : - 面向过程:强调步骤。
- 面向对象:强调对象,这里的对象就是洗衣机。
特点
面向对象思想是一种更符合我们思考习惯的思想,它可以将复杂的事情简单化,并将我们从执行者变成了指挥者。面向对象的语言中,包含了三大基本特征,即 封装
、继承
和 多态
。
类和对象
环顾周围,你会发现很多对象,比如桌子,椅子,同学,老师等。桌椅属于办公用品,师生都是人类。那么什么是类呢?什么是对象呢?
什么是类
- 类:是一组相关属性和行为的集合。可以看成是一类事物的模板,使用事物的属性特征和行为特征来描述该类事物。
现实中,描述一类事物: - 属性:就是该事物的状态信息。
- 行为:就是该事物能够做什么。
举例:小猫。
属性:名字、体重、年龄、颜色。 行为:走、跑、叫。
什么是对象
- 对象:是一类事物的具体体现。对象是类的一个实例(对象并不是找个女朋友),必然具备该类事物的属性和行为。
现实中,一类事物的一个实例:一只小猫。
举例:一只小猫。
属性:tom、5kg、2 years、yellow。 行为:溜墙根走、蹦跶的跑、喵喵叫。
类与对象的关系
- 类是对一类事物的描述,是抽象的。
- 对象是一类事物的实例,是具体的。
- 类是对象的模板,对象是类的实体。
类的定义
事物与类的对比
现实世界的一类事物:
属性:事物的状态信息。
行为:事物能够做什么。
Java中用class描述事物也是如此:
成员变量:对应事物的属性。
成员方法:对应事物的行为。
类的定义格式
public class ClassName {
//成员变量
//成员方法
}
- 定义类:就是定义类的成员,包括成员变量和成员方法。
- 成员变量:和以前定义变量几乎是一样的。只不过位置发生了改变。在类中,方法外。
- 成员方法:和以前定义方法几乎是一样的。只不过把static去掉,static的作用在面向对象后面课程中再详细
讲解。
类的定义格式举例:
public class Student {
//成员变量
String name;//姓名
int age;//年龄
//成员方法
//学习的方法
publicvoid study() {
System.out.println("好好学习,天天向上");
}
//吃饭的方法
publicvoid eat() {
System.out.println("学习饿了要吃饭");
}
}
对象的使用
对象的使用格式
创建对象:
类名 对象名 = new 类名();
使用对象访问类中的成员:
对象名.成员变量;
对象名.成员方法();
对象的使用格式举例:
public class Test01_Student {
public static void main(String[] args) {
//创建对象格式:类名 对象名 = new 类名();
Student s = new Student();
System.out.println("s:"+s); //cn.itcast.Student@100363
//直接输出成员变量值
System.out.println("姓名:"+s.name); //null
System.out.println("年龄:"+s.age); //0
System.out.println("‐‐‐‐‐‐‐‐‐‐");
//给成员变量赋值
s.name = "赵丽颖";
s.age = 18;
//再次输出成员变量的值
System.out.println("姓名:"+s.name); //赵丽颖
System.out.println("年龄:"+s.age); //18
System.out.println("‐‐‐‐‐‐‐‐‐‐");
//调用成员方法
s.study(); // "好好学习,天天向上"
s.eat(); // "学习饿了要吃饭"
}
}
成员变量的默认值
数据类型 | 默认值 | |
---|---|---|
基本类型 | 整数(byte,short,int,long) | 0 |
浮点数(float,double) | 0.0 | |
字符(char) | '\u0000' | |
布尔(boolean) | false | |
引用类型 | 数组,类,接口 | null |
对象内存图
一个对象,调用一个方法内存图
通过上图,我们可以理解,在栈内存中运行的方法,遵循"先进后出,后进先出"的原则。变量p指向堆内存中的空间,寻找方法信息,去执行该方法。
但是,这里依然有问题存在。创建多个对象时,如果每个对象内部都保存一份方法信息,这就非常浪费内存了,因为所有对象的方法信息都是一样的。那么如何解决这个问题呢?请看如下图解。
两个对象,调用同一方法内存图
对象调用方法时,根据对象中方法标记(地址值),去类中寻找方法信息。这样哪怕是多个对象,方法信息只保存一份,节约内存空间。
一个引用,作为参数传递到方法中内存图
引用类型作为参数,传递的是地址值。
成员变量和局部变量区别
变量根据定义位置的不同,我们给变量起了不同的名字。如下图所示:
- 在类中的位置不同
重点
- 成员变量:类中,方法外
- 局部变量:方法中或者方法声明上 (形式参数)
- 作用范围不一样
重点
- 成员变量:类中
- 局部变量:方法中
- 初始化值的不同
重点
- 成员变量:有默认值
- 局部变量:没有默认值。必须先定义,赋值,最后使用
- 在内存中的位置不同
了解
- 成员变量:堆内存
- 局部变量:栈内存
- 生命周期不同
了解
- 成员变量:随着对象的创建而存在,随着对象的消失而消失
- 局部变量:随着方法的调用而存在,随着方法的调用完毕而消失
封装
封装概述
概述
面向对象编程语言是对客观世界的模拟,客观世界里成员变量都是隐藏在对象内部的,外界无法直接操作和修改。封装可以被认为是一个保护屏障,防止该类的代码和数据被其他类随意访问。要访问该类的数据,必须通过指定的方式。适当的封装可以让代码更容易理解与维护,也加强了代码的安全性。
原则
将属性隐藏起来,若需要访问某个属性,提供公共方法对其访问。
封装的步骤
- 使用
private
关键字来修饰成员变量。 - 对需要访问的成员变量,提供对应的一对
getXxx
方法 、setXxx
方法。
封装的操作——private关键字
private的含义
- private是一个权限修饰符,代表最小权限。
- 可以修饰成员变量和成员方法。
- 被private修饰后的成员变量和成员方法,只在本类中才能访问。
private的使用格式
private 数据类型 变量名 ;
- 使用 private 修饰成员变量,代码如下:
public class Student {
private String name;
private int age;
}
- 提供
getXxx
方法 /setXxx
方法,可以访问成员变量,代码如下:
public class Student {
private String name;
private int age;
public void setName(String n) {
name = n;
}
public String getName() {
return name;
}
public void setAge(int a) {
age = a;
}
public int getAge() {
return age;
}
}
封装优化1——this关键字
我们发现setXxx
方法中的形参名字并不符合见名知意的规定,那么如果修改与成员变量名一致,是否就见名知意了呢?代码如下:
public class Student {
private String name;
private int age;
public void setName(String name) {
name = name;
}
public void setAge(int age) {
age = age;
}
}
经过修改和测试,我们发现新的问题,成员变量赋值失败了。也就是说,在修改了setXxx()
的形参变量名后,方法并没有给成员变量赋值!这是由于形参变量名与成员变量名重名,导致成员变量名被隐藏,方法中的变量名,无法访问到成员变量,从而赋值失败。所以,我们只能使用this关键字,来解决这个重名问题。
this的含义
this代表所在类的当前对象的引用(地址值),即对象自己的引用。
记住 :方法被哪个对象调用,方法中的this就代表那个对象。即谁在调用,this就代表谁。
this使用格式
this.成员变量名;
使用this
修饰方法中的变量,解决成员变量被隐藏的问题,代码如下:
public class Student {
private String name;
private int age;
public void setName(String name) {
//name = name;
this.name = name;
}
public String getName() {
return name;
}
public void setAge(int age) {
//age = age;
this.age = age;
}
public int getAge() {
return age;}
}
小贴士:方法中只有一个变量名时,默认也是使用 this 修饰,可以省略不写。
封装优化2——构造方法
当一个对象被创建时候,构造方法用来初始化该对象,给对象的成员变量赋初始值。
小贴士:无论你与否自定义构造方法,所有的类都有构造方法,因为Java自动提供了一个无参数构造方法,一旦自己定义了构造方法,Java自动提供的默认无参数构造方法就会失效。
构造方法的定义格式
修饰符 构造方法名(参数列表){
// 方法体
}
构造方法的写法上,方法名与它所在的类名相同。它没有返回值,所以不需要返回值类型,甚至不需要void。使用构造方法后,代码如下:
public class Student {
private String name;
private int age;
// 无参数构造方法
public Student() {}
// 有参数构造方法
public Student(String name,int age) {
this.name = name;
this.age = age;
}
}
注意事项
- 如果你不提供构造方法,系统会给出无参数构造方法。
- 如果你提供了构造方法,系统将不再提供无参数构造方法。
- 构造方法是可以重载的,既可以定义参数,也可以不定义参数。
标准代码——JavaBean
JavaBean
是 Java语言编写类的一种标准规范。符合 JavaBean
的类,要求类必须是具体的和公共的,并且具有无参数的构造方法,提供用来操作成员变量的set
和get
方法。
public class ClassName{
//成员变量
//构造方法
//无参构造方法【必须】
//有参构造方法【建议】
//成员方法
//getXxx()
//setXxx()
}
编写符合JavaBean
规范的类,以学生类为例,标准代码如下:
public class Student {
//成员变量
private String name;
private int age;
//构造方法
public Student() {}
public Student(String name,int age) {
this.name = name;
this.age = age;
}
//成员方法
publicvoid setName(String name) {
this.name = name;
}
public String getName() {
return name;
}
publicvoid setAge(int age) {
this.age = age;
}
publicint getAge() {
return age;
}
}
测试类,代码如下:
public class TestStudent {
public static void main(String[] args) {
//无参构造使用
Student s= new Student();
s.setName("柳岩");
s.setAge(18);
System.out.println(s.getName()+"‐‐‐"+s.getAge());//带参构造使用
Student s2= new Student("赵丽颖",18);
System.out.println(s2.getName()+"‐‐‐"+s2.getAge());
}
}
继承
概述
由来
多个类中存在相同属性和行为时,将这些内容抽取到单独一个类中,那么多个类无需再定义这些属性和行为,只要继承那一个类即可。
其中,多个类可以称为子类,单独那一个类称为父类、超类(superclass) 或者基类。
继承描述的是事物之间的所属关系,这种关系是: is -a 的关系。例如,兔子属于食草动物,食草动物属于动物。可见,父类更通用,子类更具体。我们通过继承,可以使多种事物之间形成一种关系体系。
定义
继承 :就是子类继承父类的属性和行为,使得子类对象具有与父类相同的属性、相同的行为。子类可以直接
访问父类中的非私有的属性和行为。
好处
- 提高代码的复用性。
- 类与类之间产生了关系,是多态的前提。
继承的格式
通过extends
关键字,可以声明一个子类继承另外一个父类,定义格式如下:
class 父类 {
...
}
class 子类 extends 父类 {
...
}
继承演示,代码如下:
/*
* 定义员工类Employee,做为父类
*/class Employee {String name; // 定义name属性 // 定义员工的工作方法 public void work() { System.out.println("尽心尽力地工作"); }
}
/*
* 定义讲师类Teacher 继承 员工类Employee
*/
class Teacher extends Employee {// 定义一个打印name的方法 public void printName() { System.out.println("name=" + name); }
}
/*
* 定义测试类
*/
public class ExtendDemo01 {public static void main(String[] args) { // 创建一个讲师类对象Teacher t = new Teacher(); // 为该员工类的name属性进行赋值t.name = "小明"; // 调用该员工的printName()方法 t.printName(); // name = 小明 ` // 调用Teacher类继承来的work()方法 t.work(); // 尽心尽力地工作 }
}
继承后的特点
成员变量
当类之间产生了关系后,其中各类中的成员变量,又产生了哪些影响呢?
成员变量不重名
如果子类父类中出现不重名的成员变量,这时的访问是没有影响的。代码如下:
class Fu {// Fu中的成员变量。 int num = 5;
}
class Zi extends Fu {//Zi中的成员变量 int num2 = 6; // Zi中的成员方法 public void show() { // 访问父类中的num, System.out.println("Fu num="+num); // 继承而来,所以直接访问。 // 访问子类中的num2 System.out.println("Zi num2="+num2); }
}
class ExtendDemo02 {public static void main(String[] args) { // 创建子类对象Zi z = new Zi(); // 调用子类中的show方法 z.show(); }
}
演示结果:
Fu num = 5
Zi num2 = 6
成员变量重名
如果子类父类中出现重名的成员变量,这时的访问是有影响的。代码如下:
class Fu {// Fu中的成员变量。 int num = 5;
}
class Zi extends Fu {// Zi中的成员变量 int num = 6; public void show() { // 访问父类中的num System.out.println("Fu num=" + num); // 访问子类中的num System.out.println("Zi num=" + num); }
}
class ExtendsDemo03 {public static void main(String[] args) { // 创建子类对象 Zi z = new Zi(); // 调用子类中的show方法 z.show(); }
}
演示结果:
Fu num = 6
Zi num = 6
子父类中出现了同名的成员变量时,在子类中需要访问父类中非私有成员变量时,需要使用 super 关键字,修饰父类成员变量,类似于之前学过的 this 。
使用格式:
super.父类成员变量名
子类方法需要修改,代码如下:
class Zi extends Fu {// Zi中的成员变量 int num = 6; public void show() { //访问父类中的num System.out.println("Fu num=" + super.num); //访问子类中的num System.out.println("Zi num=" + this.num); }
}
演示结果:
Fu num = 5
Zi num = 6
小贴士:Fu 类中的成员变量是非私有的,子类中可以直接访问。若Fu 类中的成员变量私有了,子类是不能直接访问的。通常编码时,我们遵循封装的原则,使用private修饰成员变量,那么如何访问父类的私有成员变量呢?对!可以在父类中提供公共的getXxx方法和setXxx方法。
成员方法
当类之间产生了关系,其中各类中的成员方法,又产生了哪些影响呢?
成员方法不重名
如果子类父类中出现不重名的成员方法,这时的调用是没有影响的。对象调用方法时,会先在子类中查找有没有对应的方法,若子类中存在就会执行子类中的方法,若子类中不存在就会执行父类中相应的方法。代码如下:
class Fu{public void show(){ System.out.println("Fu类中的show方法执行"); }
}
class Zi extends Fu{public void show2(){ System.out.println("Zi类中的show2方法执行"); }
}
public class ExtendsDemo04{public static void main(String[] args) { Zi z = new Zi(); //子类中没有show方法,但是可以找到父类方法去执行show(); z.show2(); }
}
成员方法重名 ——重写(Override)
如果子类父类中出现重名的成员方法,这时的访问是一种特殊情况,叫做方法重写 (Override)。
- 方法重写:子类中出现与父类一模一样的方法时(返回值类型,方法名和参数列表都相同),会出现覆盖效果,也称为重写或者复写。声明不变,重新实现。
代码如下:
class Fu {public void show() { System.out.println("Fu show"); }
}
class Zi extends Fu {//子类重写了父类的show方法 public void show() { System.out.println("Zi show"); }
}
public class ExtendsDemo05{public static void main(String[] args) { Zi z = new Zi(); // 子类中有show方法,只执行重写后的show方法 z.show(); // Zi show }
}
重写的应用
子类可以根据需要,定义特定于自己的行为。既沿袭了父类的功能名称,又根据子类的需要重新实现父类方法,从而进行扩展增强。比如新的手机增加来电显示头像的功能,代码如下:
class Phone {public void sendMessage(){ System.out.println("发短信"); } public void call(){ System.out.println("打电话"); } public void showNum(){ System.out.println("来电显示号码"); }
}
//智能手机类
class NewPhone extends Phone {//重写父类的来电显示号码功能,并增加自己的显示姓名和图片功能 public void showNum(){ //调用父类已经存在的功能使用super super.showNum(); //增加自己特有显示姓名和图片功能 System.out.println("显示来电姓名"); System.out.println("显示头像"); }
}
public class ExtendsDemo06 {public static void main(String[] args) { // 创建子类对象 NewPhone np = new NewPhone(); // 调用父类继承而来的方法np.call();// 调用子类重写的方法 np.showNum(); }
}
小贴士:这里重写时,用到 super.父类成员方法,表示调用父类的成员方法。
注意事项
- 子类方法覆盖父类方法,必须要保证权限大于等于父类权限。
- 子类方法覆盖父类方法,返回值类型、函数名和参数列表都要一模一样。
构造方法
当类之间产生了关系,其中各类中的构造方法,又产生了哪些影响呢?
首先我们要回忆两个事情,构造方法的定义格式和作用。
- 构造方法的名字是与类名一致的。所以子类是无法继承父类构造方法的。
- 构造方法的作用是初始化成员变量的。所以子类的初始化过程中,必须先执行父类的初始化动作。子类的构造方法中默认有一个
super()
,表示调用父类的构造方法,父类成员变量初始化后,才可以给子类使用。代码如下:
class Fu {private int n;Fu(){System.out.println("Fu()");}
}
class Zi extends Fu {Zi(){// super(),调用父类构造方法super();System.out.println("Zi()");}
}
public class ExtendsDemo07{public static void main (String args[]){Zi zi = new Zi();}
}
输出结果:
Fu()
Zi(
super 和this
父类空间优先于子类对象产生
在每次创建子类对象时,先初始化父类空间,再创建其子类对象本身。目的在于子类对象中包含了其对应的父类空
间,便可以包含其父类的成员,如果父类成员非private修饰,则子类可以随意使用父类成员。代码体现在子类的构
造方法调用时,一定先调用父类的构造方法。理解图解如下:
super和this的含义
- super:代表父类的存储空间标识(可以理解为父亲的引用)。
- this:代表当前对象的引用(谁调用就代表谁)。
super和this的用法
- 访问成员
this.成员变量 ‐‐ 本类的
super.成员变量 ‐‐ 父类的 this.成员方法名() ‐‐ 本类的
super.成员方法名() ‐‐ 父类的
用法演示,代码如下:
class Animal {
public void eat() {
System.out.println("animal : eat");
}
}
class Cat extends Animal {
public void eat() {
System.out.println("cat : eat");
}
public void eatTest() {
this.eat(); // this 调用本类的方法
super.eat(); // super 调用父类的方法
}
}
public class ExtendsDemo08 {
public static void main(String[] args) {
Animal a = new Animal();
a.eat();
Cat c = new Cat();
c.eatTest();
}
}
输出结果为:
animal : eat
cat : eat
animal : eat
- 访问构造方法
this(...) ‐‐ 本类的构造方法
super(...) ‐‐ 父类的构造方法
子类的每个构造方法中均有默认的super(),调用父类的空参构造。手动调用父类构造会覆盖默认的super()。super() 和 this() 都必须是在构造方法的第一行,所以不能同时出现。
继承的特点
- Java只支持单继承,不支持多继承。
//一个类只能有一个父类,不可以有多个父类。
class C extends A{} //ok
class C extends A,B... //error
- Java支持多层继承(继承体系)。
class A{}
class B extends A{}
class C extends B{}
顶层父类是Object类。所有的类默认继承Object,作为父类。
- 子类和父类是一种相对的概念。
多态(接口之后)
概述
引入
多态是继封装、继承之后,面向对象的第三大特性。
生活中,比如跑的动作,小猫、小狗和大象,跑起来是不一样的。再比如飞的动作,昆虫、鸟类和飞机,飞起来也是不一样的。可见,同一行为,通过不同的事物,可以体现出来的不同的形态。多态,描述的就是这样的状态。
定义
- 多态 : 是指同一行为,具有多个不同表现形式。
前提【重点】
- 继承或者实现【二选一】
- 方法的重写【意义体现:不重写,无意义】
- 父类引用指向子类对象【格式体现】
多态的体现
多态体现的格式:
父类类型 变量名 = new 子类对象;
变量名.方法名();
- 父类类型:指子类对象继承的父类类型,或者实现的父接口类型。
代码如下:
Fu f = new Zi();
f.method();
当使用多态方式调用方法时,首先检查父类中是否有该方法,如果没有,则编译错误;如果有,执行的是子类重写后方法。
代码如下:
定义父类:
public abstract class Animal {
public abstract void eat();
}
定义子类:
class Cat extends Animal {
public void eat() {
System.out.println("吃鱼");
}
}
class Dog extends Animal {
public void eat() {
System.out.println("吃骨头");
}
}
定义测试类:
public class Test {
public static void main(String[] args) {
// 多态形式,创建对象
Animal a1 = new Cat();
// 调用的是 Cat 的 eat
a1.eat();
// 多态形式,创建对象
Animal a2 = new Dog();
// 调用的是 Dog 的 eat
a2.eat();
}
}
多态的好处
实际开发的过程中,父类类型作为方法形式参数,传递子类对象给方法,进行方法的调用,更能体现出多态的扩展性与便利。代码如下:
定义父类:
public abstract class Animal {
public abstract void eat();
}
定义子类:
class Cat extends Animal {
public void eat() {
System.out.println("吃鱼");
}
}
class Dog extends Animal {
public void eat() {
System.out.println("吃骨头");
}
}
定义测试类:
public class Test {
public static void main(String[] args) {
// 多态形式,创建对象
Cat c = new Cat();
Dog d = new Dog();
// 调用showCatEat
showCatEat(c);
// 调用showDogEat
showDogEat(d);
/*
以上两个方法, 均可以被showAnimalEat(Animal a)方法所替代
而执行效果一致
*/
showAnimalEat(c);
showAnimalEat(d);
}
public static void showCatEat (Cat c){
c.eat();
}
public static void showDogEat (Dog d){
d.eat();
}
public static void showAnimalEat (Animal a){
a.eat();
}
}
由于多态特性的支持, showAnimalEat方法的Animal类型,是Cat和Dog的父类类型,父类类型接收子类对象,当然可以把Cat对象和Dog对象,传递给方法。
当eat方法执行时,多态规定,执行的是子类重写的方法,那么效果自然与showCatEat、showDogEat方法一致,所以showAnimalEat完全可以替代以上两方法。
不仅仅是替代,在扩展性方面,无论之后再多的子类出现,我们都不需要编写showXxxEat方法了,直接使用showAnimalEat都可以完成。
所以,多态的好处,体现在,可以使程序编写的更简单,并有良好的扩展。
引用类型转换
多态的转型分为向上转型与向下转型两种:
向上转型
- 向上转型:多态本身是子类类型向父类类型向上转换的过程,这个过程是默认的。
当父类引用指向一个子类对象时,便是向上转型。
使用格式:
父类类型 变量名 = new 子类类型();
如:Animal a = new Cat();
向下转型
- 向下转型:父类类型向子类类型向下转换的过程,这个过程是强制的。
一个已经向上转型的子类对象,将父类引用转为子类引用,可以使用强制类型转换的格式,便是向下转型。
使用格式:
子类类型 变量名 = (子类类型) 父类变量名;
如:Cat c =(Cat) a;
为什么要转型
当使用多态方式调用方法时,首先检查父类中是否有该方法,如果没有,则编译错误。也就是说,不能调用子类拥有,而父类没有的方法。编译都错误,更别说运行了。这也是多态给我们带来的一点"小麻烦"。所以,想要调用子类特有的方法,必须做向下转型。
转型演示,代码如下:
定义类:
abstract class Animal {
abstract void eat();
}
class Cat extends Animal {
public void eat() {
System.out.println("吃鱼");
}
public void catchMouse() {
System.out.println("抓老鼠");
}
}
class Dog extends Animal {
public void eat() {
System.out.println("吃骨头");
}
public void watchHouse() {
System.out.println("看家");
}
}
定义测试类:
public class Test {
public static void main(String[] args) {
// 向上转型
Animal a = new Cat();
a.eat(); // 调用的是 Cat 的 eat
// 向下转型
Cat c = (Cat)a;
c.catchMouse(); // 调用的是 Cat 的 catchMouse
}
}
转型的异常
转型的过程中,一不小心就会遇到这样的问题,请看如下代码:
public class Test {
public static void main(String[] args) {
// 向上转型
Animal a = new Cat();
a.eat(); // 调用的是 Cat 的 eat
// 向下转型
Dog d = (Dog)a;
d.watchHouse(); // 调用的是 Dog 的 watchHouse 【运行报错】
}
}
这段代码可以通过编译,但是运行时,却报出了ClassCastException
,类型转换异常!这是因为,明明创建了Cat类型对象,运行时,当然不能转换成Dog对象的。这两个类型并没有任何继承关系,不符合类型转换的定义。
为了避免ClassCastException的发生,Java提供了instanceof
关键字,给引用变量做类型的校验,格式如下:
变量名 instanceof 数据类型
如果变量属于该数据类型,返回true。
如果变量不属于该数据类型,返回false。
所以,转换前,我们最好先做一个判断,代码如下:
public class Test {
public static void main(String[] args) {
// 向上转型
Animal a = new Cat();
a.eat(); // 调用的是 Cat 的 eat
// 向下转型
if (a instanceof Cat){
Cat c = (Cat)a;
c.catchMouse(); // 调用的是 Cat 的 catchMouse
} else if (a instanceof Dog){
Dog d = (Dog)a;
d.watchHouse(); // 调用的是 Dog 的 watchHouse
}
}
}