ceph peering机制-状态机

本章介绍ceph中比较复杂的模块:

Peering机制。该过程保障PG内各个副本之间数据的一致性,并实现PG的各种状态的维护和转换。本章首先介绍boost库的statechart状态机基本知识,Ceph使用它来管理PG的状态转换。其次介绍PG的创建过程以及相应的状态机创建和初始化。然后详细介绍peering机制三个具体的实现阶段:GetInfo、GetLog、GetMissing。

statechart状态机
1.1 状态
1.2 事件
1.3 状态机的响应
1.4 状态机的定义
1.5 context函数
1.6 事件的特殊处理
1.7 PG状态机
1.8 PG状态机的总体状态转换图
1.9 OSD启动加载PG状态机转换
1.10 PG创建后状态机的状态转换
1.11 PG在触发Peering过程时机


1. statechart状态机


Ceph在处理PG的状态转换时,使用了boost库提供的statechart状态机。因此先简单介绍一下statechart状态机的基本概念和涉及的相关知识,以便更好地理解Peering过程PG的状态机转换流程。下面例举时截取了PG状态机的部分代码。

1.1 状态

没有子状态情况下的状态定义
在statechart里,一个状态的定义方式有两种:

 
  1. struct Reset : boost::statechart::state< Reset, RecoveryMachine >, NamedState {

  2. ...

  3. };

这里定义了状态Reset,它需要继承boost::statechart::state类。该类的模板参数中,第一个参数为状态自己的名字Reset,第二个参数为该状态所属状态机的名字,表明Reset是状态机RecoveryMachine的一个状态。

有子状态情况下的状态定义

 
  1. struct Start;

  2. struct Started : boost::statechart::state< Started, RecoveryMachine, Start >, NamedState {

  3. ...

  4. }

  5. struct Start : boost::statechart::state< Start, Started >, NamedState {

  6. };

状态Started也是状态机RecoveryMachine的一个状态,模板参数中多了一个参数Start,它是状态Started的默认初始子状态。
这里定义的Start是状态Started的子状态。第一个模板参数是自己的名字,第二个模板参数是该子状态所属父状态的名字。

综上所述,一个状态,要么属于一个状态机,要么属于一个状态,成为该状态的子状态。其定义的模板参数是自己,第二个参数是拥有者,第三个参数是它的起始子状态。

 1.2 事件

状态能够接收并处理事件。事件可以改变状态,促使状态发生转移。在boost库的statechart状态机中定义事件的方式如下所示:

 
  1. struct QueryState : boost::statechart::event< QueryState > {

  2. Formatter *f;

  3. explicit QueryState(Formatter *f) : f(f) {}

  4. void print(std::ostream *out) const {

  5. *out << "Query";

  6. }

  7. };

  8. };

QueryState为一个事件,需要继承boost::statechart::event类,模板参数为自己的名字。

1.3 状态机的响应

在一个状态内部,需要定义状态机处于当前状态时,可以接受的事件以及如何处理这些事件的方法:

 
  1. #define TrivialEvent(T) struct T : boost::statechart::event< T > { \

  2. T() : boost::statechart::event< T >() {} \

  3. void print(std::ostream *out) const { \

  4. *out << #T; \

  5. } \

  6. };

  7. TrivialEvent(Initialize)

  8. TrivialEvent(Load)

  9. TrivialEvent(GotInfo)

  10. TrivialEvent(NeedUpThru)

  11. TrivialEvent(NullEvt)

  12. TrivialEvent(FlushedEvt)

  13. TrivialEvent(Backfilled)

  14. TrivialEvent(LocalBackfillReserved)

  15. TrivialEvent(RemoteBackfillReserved)

  16. TrivialEvent(RejectRemoteReservation)

  17. TrivialEvent(RemoteReservationRejected)

  18. TrivialEvent(RemoteReservationCanceled)

  19. TrivialEvent(RequestBackfill)

  20. TrivialEvent(RequestRecovery)

  21. TrivialEvent(RecoveryDone)

  22. TrivialEvent(BackfillTooFull)

  23. TrivialEvent(RecoveryTooFull)

  24. TrivialEvent(MakePrimary)

  25. TrivialEvent(MakeStray)

  26. TrivialEvent(NeedActingChange)

  27. TrivialEvent(IsIncomplete)

  28. TrivialEvent(IsDown)

  29. TrivialEvent(AllReplicasRecovered)

  30. TrivialEvent(DoRecovery)

  31. TrivialEvent(LocalRecoveryReserved)

  32. TrivialEvent(RemoteRecoveryReserved)

  33. TrivialEvent(AllRemotesReserved)

  34. TrivialEvent(AllBackfillsReserved)

  35. TrivialEvent(GoClean)

  36. TrivialEvent(AllReplicasActivated)

  37. TrivialEvent(IntervalFlush)

 
  1. struct Initial : boost::statechart::state< Initial, RecoveryMachine >, NamedState {

  2. explicit Initial(my_context ctx);

  3. void exit();

  4. typedef boost::mpl::list <

  5. boost::statechart::transition< Initialize, Reset >,

  6. boost::statechart::custom_reaction< Load >,

  7. boost::statechart::custom_reaction< NullEvt >,

  8. boost::statechart::transition< boost::statechart::event_base, Crashed >

  9. > reactions;

  10. boost::statechart::result react(const Load&);

  11. boost::statechart::result react(const MNotifyRec&);

  12. boost::statechart::result react(const MInfoRec&);

  13. boost::statechart::result react(const MLogRec&);

  14. boost::statechart::result react(const boost::statechart::event_base&) {

  15. return discard_event();

  16. }

  17. };

状态机的7种事件处理方法 

上述代码列出了状态RecoveryMachine/Initial可以处理的事件列表和处理对应事件的方法:

1) 通过boost::mpl::list定义该状态可以处理多个事件类型。本例中可以处理Initialize、Load、NullEvt和event_base事件。

2) 简单事件处理

boost::statechart::transition< Initialize, Reset >

定义了状态Initial接收到事件Initialize后,无条件直接跳转到Reset状态;

3) 用户自定义事件处理: 当接收到事件后,需要根据一些条件来决定状态如何转移,这个逻辑需要用户自己定义实现

boost::statechart::custom_reaction< Load >

custom_reaction 定义了一个用户自定义的事件处理方法,必须有一个react()的处理函数处理对应该事件。状态转移的逻辑需要用户自己在react函数里实现:

boost::statechart::result react(const Load&);


4)NullEvt事件用户自定义处理,但是没有实现react()函数来处理,最终事件匹配了boost::statechart::event_base事件,直接调用函数discard_event把事件丢弃掉。

 
  1. boost::statechart::custom_reaction< NullEvt >

  2.     

  3. boost::statechart::result react(const boost::statechart::event_base&) {

  4.     return discard_event();

  5.       }

1.4 状态机的定义
RecoveryMachine为定义的状态机,需要继承boost::statechart::state_machine类:

 
  1.     struct Initial;

  2.     class RecoveryMachine : public boost::statechart::state_machine< RecoveryMachine, Initial > {

  3.       RecoveryState *state;

  4.     public:

  5.       PG *pg;

  6.       }

模板参数第一个参数为自己的名字,第二个参数为状态机默认的初始状态Initial。

状态机的基本操作有两个:   

 
  1. RecoveryMachine machine;

  2.     PG *pg;

  3.     explicit RecoveryState(PG *pg)

  4.       : machine(this, pg), pg(pg), orig_ctx(0) {

  5.       machine.initiate();//a---

  6.     }

  7.     void handle_event(const boost::statechart::event_base &evt,

  8.               RecoveryCtx *rctx) {

  9.       start_handle(rctx);

  10.       machine.process_event(evt);//b---

  11.       end_handle();

  12.     }

  13.     void handle_event(CephPeeringEvtRef evt,

  14.               RecoveryCtx *rctx) {

  15.       start_handle(rctx);

  16.       machine.process_event(evt->get_event());/b---

  17.       end_handle();

  18.     }


a.状态机的初始化

initiate()是继承自boost::statechart::state_machine的成员函数。

b.函数process_event()用来向状态机投递事件,从而触发状态机接收并处理该事件

process_event()也是继承自boost::statechart::state_machine的成员函数。

1.5 context函数
context是状态机的一个比较有用的函数,它可以获取当前状态的所有祖先状态的指针。通过它可以获取父状态以及祖先状态的一些内部参数和状态值。context()函数是实现在boost::statechart::state_machine中的:

context()函数在boost::statechart::simple_state中有实现:

 
  1. //boost_1_73_0/boost/statechart/simple_state.hpp

  2. 234     template< class OtherContext >

  3. 235     OtherContext & context()

  4. 236     {

  5. 237       typedef typename mpl::if_<

  6. 238         is_base_of< OtherContext, MostDerived >,

  7. 239         context_impl_this_context,

  8. 240         context_impl_other_context

  9. 241       >::type impl;

  10. 242       return impl::template context_impl< OtherContext >( *this );

  11. 243     }

  12. 244      

  13. 245     template< class OtherContext >

  14. 246     const OtherContext & context() const

  15. 247     {

  16. 248       typedef typename mpl::if_<

  17. 249         is_base_of< OtherContext, MostDerived >,

  18. 250         context_impl_this_context,

  19. 251         context_impl_other_context

  20. 252       >::type impl;

  21. 253       return impl::template context_impl< OtherContext >( *this );

  22. 254     }

从simple_state的实现来看,context()可以获取当前状态的祖先状态指针,也可以获取当前状态所属状态机的指针。

例如状态Started是RecoveryMachine的一个状态,状态Start是Started状态的一个子状态,那么如果当前状态是Start,就可以通过该函数获取它的父状态Started的指针:

Started * parent = context< Started >();

同时也可以获取其祖先状态RecoveryMachine的指针:

RecoveryMachine *machine = context< RecoveryMachine >();

在状态机实现中,大量了使用该函数来获取相应的指针。Eg:

 
  1.   PG *pg = context< RecoveryMachine >().pg;

  2.   context< RecoveryMachine >().get_cur_transaction(),

  3.   context< RecoveryMachine >().get_on_applied_context_list(),

  4.   context< RecoveryMachine >().get_on_safe_context_list());

综上所述,context()函数为获取当前状态的祖先状态上下文提供了一种方法。

<span id = “1.6事件的特殊处理”></span>

1.6 事件的特殊处理
事件除了在状态转移列表中触发状态转移,或者进入用户自定义的状态处理函数,还可以有下列特殊的处理方式:

在用户自定义的函数里,可以直接调用函数transit来直接跳转到目标状态。例如:

 
  1. boost::statechart::result PG::RecoveryState::Initial::react(const MLogRec& i)

  2. {

  3.   PG *pg = context< RecoveryMachine >().pg;

  4.   assert(!pg->is_primary());

  5.   post_event(i);

  6.   return transit< Stray >();//go---

  7. }

可以直接跳转到状态Stray。在用户自定义的函数里,可以调用函数post_event()直接产生相应的事件,并投递给状态机

 
  1. PG::RecoveryState::Start::Start(my_context ctx)

  2.   : my_base(ctx),

  3.     NamedState(context< RecoveryMachine >().pg->cct, "Start")

  4. {

  5.   context< RecoveryMachine >().log_enter(state_name);

  6.   PG *pg = context< RecoveryMachine >().pg;

  7.   if (pg->is_primary()) {

  8.     dout(1) << "transitioning to Primary" << dendl;

  9.     post_event(MakePrimary());//go---

  10.   } else { //is_stray

  11.     dout(1) << "transitioning to Stray" << dendl; 

  12.     post_event(MakeStray());//go---

  13.   }

  14. }

在用户的自定义函数里,调用函数discard_event()可以直接丢弃事件,不做任何处理

 
  1. boost::statechart::result PG::RecoveryState::Primary::react(const ActMap&)

  2. {

  3.   dout(7) << "handle ActMap primary" << dendl;

  4.   PG *pg = context< RecoveryMachine >().pg;

  5.   pg->publish_stats_to_osd();

  6.   pg->take_waiters();

  7.   return discard_event();//go---

  8. }

在用户的自定义函数里,调用函数forward_event()可以把当前事件继续投递给状态机

 
  1. boost::statechart::result PG::RecoveryState::WaitUpThru::react(const ActMap& am)

  2. {

  3.   PG *pg = context< RecoveryMachine >().pg;

  4.   if (!pg->need_up_thru) {

  5.     post_event(Activate(pg->get_osdmap()->get_epoch()));

  6.   }

  7.   return forward_event();

  8. }

结合 1.3 状态机的响应 的3种事件响应,大概有7种事件响应处理的方法。

1.7 PG状态机
在类PG的内部定义了类RecoveryState,该类RecoveryState的内部定义了PG的状态机RecoveryMachine和它的各种状态。

 
  1. class PG{

  2.     class RecoveryState{

  3.         class RecoveryMachine{

  4.         };

  5.     };

  6. };

在每个PG创建时,在构造函数里创建一个新的RecoveryState类的对象,并创建相应的RecoveryMachine类的对象,也就是创建了一个新的状态机。每个PG类对应一个独立的状态机来控制该PG的状态转换。

 
  1. PG::PG(OSDService *o, OSDMapRef curmap,

  2.        const PGPool &_pool, spg_t p) :

  3.     recovery_state(this){

  4. }

  5. class RecoveryState{

  6. public:

  7.     explicit RecoveryState(PG *pg)

  8.       : machine(this, pg), pg(pg), orig_ctx(0) {

  9.       machine.initiate();

  10.     }

  11. };

上面machine.initiate()调用的是boost::statechart::state_machine中的initiate()方法。
1.8 PG状态机的总体状态转换图

下图为PG状态机的总体状态转换图简化版

1.9 OSD启动加载PG状态机转换
当OSD重启时,调用函数OSD::init(),该函数调用load_pgs()加载已经存在的PG,其处理过程和以下创建PG的过程相似。

 
  1. int OSD::init()

  2. {

  3.   // load up pgs (as they previously existed)

  4.   load_pgs();

  5. }

  6. void OSD::load_pgs()

  7. {

  8. ...

  9.     PG::RecoveryCtx rctx(0, 0, 0, 0, 0, 0);

  10.     pg->handle_loaded(&rctx);//go--

  11. ...

  12. }

  13. void PG::handle_loaded(RecoveryCtx *rctx)

  14. {

  15.   dout(10) << "handle_loaded" << dendl;

  16.   Load evt;

  17.   recovery_state.handle_event(evt, rctx);

  18. }

  19. struct Initial : boost::statechart::state< Initial, RecoveryMachine >, NamedState {

  20.     typedef boost::mpl::list <

  21.     boost::statechart::transition< Initialize, Reset >,

  22.     boost::statechart::custom_reaction< Load >,

  23.     boost::statechart::custom_reaction< NullEvt >,

  24.     boost::statechart::transition< boost::statechart::event_base, Crashed >

  25.     > reactions;

  26.     

  27.     boost::statechart::result react(const Load&);

  28. }

  29. boost::statechart::result PG::RecoveryState::Initial::react(const Load& l)

  30. {

  31.   PG *pg = context< RecoveryMachine >().pg;

  32.   // do we tell someone we're here?

  33.   pg->send_notify = (!pg->is_primary());

  34.   pg->update_store_with_options();

  35.   pg->update_store_on_load();

  36.   return transit< Reset >();//go---

  37. }

1.10 PG创建后状态机的状态转换
 

 
  1. void PG::handle_create(RecoveryCtx *rctx)

  2. {

  3.   dout(10) << "handle_create" << dendl;

  4.   rctx->created_pgs.insert(this);

  5.   Initialize evt;

  6.   recovery_state.handle_event(evt, rctx);

  7.   ActMap evt2;

  8.   recovery_state.handle_event(evt2, rctx);

  9.   rctx->on_applied->add(make_lambda_context([this]() {

  10.     update_store_with_options();

  11.   }));

  12. }

当PG创建后,同时在该类内部创建了一个属于该PG的RecoveryMachine类型的状态机,该状态机的初始化状态为默认初始化状态Initial。

在PG创建后,调用函数pg->handle_create(&rctx)来给状态机投递事件

该函数首先向RecoveryMachine投递了Initialize类型的事件。接收到Initialize类型的事件后直接转移到Reset状态。其次,向RecoveryMachine投递了ActMap事件。

 
  1. boost::statechart::result PG::RecoveryState::Reset::react(const ActMap&)

  2. {

  3.   PG *pg = context< RecoveryMachine >().pg;

  4.   if (pg->should_send_notify() && pg->get_primary().osd >= 0) {

  5.     context< RecoveryMachine >().send_notify(

  6.       pg->get_primary(),

  7.       pg_notify_t(

  8.     pg->get_primary().shard, pg->pg_whoami.shard,

  9.     pg->get_osdmap()->get_epoch(),

  10.     pg->get_osdmap()->get_epoch(),

  11.     pg->info),

  12.       pg->past_intervals);

  13.   }

  14.   pg->update_heartbeat_peers();

  15.   pg->take_waiters();

  16.   return transit< Started >();//a---

  17. }

a. 在自定义的react函数里直接调用了transit函数跳转到Started状态。   

 
  1. struct Start;

  2.     struct Started : boost::statechart::state< Started, RecoveryMachine, Start >, NamedState {//这里直接进入默认子状态Start

  3.     ...

  4.     }

  5.     /*-------Start---------*/

  6.     PG::RecoveryState::Start::Start(my_context ctx)

  7.       : my_base(ctx),

  8.         NamedState(context< RecoveryMachine >().pg, "Start")

  9.     {

  10.       context< RecoveryMachine >().log_enter(state_name);

  11.     

  12.       PG *pg = context< RecoveryMachine >().pg;

  13.       if (pg->is_primary()) {

  14.         ldout(pg->cct, 1) << "transitioning to Primary" << dendl;

  15.         post_event(MakePrimary());//go---

  16.       } else { //is_stray

  17.         ldout(pg->cct, 1) << "transitioning to Stray" << dendl;

  18.         post_event(MakeStray());//go---

  19.       }

  20.     }

  21.     

  22.     struct Start : boost::statechart::state< Start, Started >, NamedState {

  23.       explicit Start(my_context ctx);

  24.       void exit();

  25.     typedef boost::mpl::list <

  26.     boost::statechart::transition< MakePrimary, Primary >,

  27.     boost::statechart::transition< MakeStray, Stray >

  28.     > reactions;

  29.     };    

  30.     

  31.     struct Primary : boost::statechart::state< Primary, Started, Peering >, NamedState {//这里直接进入Primary的默认子状态Peering。

  32.     ...

  33.     }

  34.     

  35.     struct Stray : boost::statechart::state< Stray, Started >, NamedState {

  36.     ...

  37.     }    

1.进入状态RecoveryMachine/Started后,就进入RecoveryMachine/Started的默认的子状态RecoveryMachine/Started/Start中。
由以上代码可知,在Start状态的构造函数中,根据本OSD在该PG中担任的角色不同分别进行如下处理:

(1)如果是主OSD,就调用函数post_event(),抛出事件MakePrimary,进入主OSD的默认子状态Primary/Peering中;

(2)如果是从OSD,就调用函数post_event(),抛出事件MakeStray,进入Started/Stray状态;

对于一个OSD的PG处于Stray状态,是指该OSD上的PG副本目前状态不确定,但是可以响应主OSD的各种查询操作。它有两种可能:一种是最终转移到状态ReplicaActive,处于活跃状态,成为PG的一个副本;另一种可能的情况是:如果是数据迁移的源端,可能一直保持Stray状态,该OSD上的副本可能在数据迁移完成后,PG以及数据就都被删除了。

1.11 PG在触发Peering过程时机:
1.当系统初始化时,OSD重新启动导致PG重新加载。
2.PG新创建时,PG会发起一次Peering的过程
3. 当有OSD失效,OSD的增加或者删除等导致PG的acting set发生了变化,该PG就会重新发起一次Peering过程。
参考link:
 https://ivanzz1001.github.io/records/post/ceph/2019/02/01/ceph-src-code-part10_1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/87677.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java学数据结构(4)——散列表Hash table 散列函数 哈希冲突

目录 引出散列表Hash table关键字Key和散列函数(hash function)散列函数解决collision哈希冲突&#xff08;碰撞&#xff09;分离链接法(separate chaining)探测散列表(probing hash table)双散列(double hashing) Java标准库中的散列表总结 引出 1.散列表&#xff0c;key&…

day2 牛客TOP100:BM 11-20 链表 二分法 流输入 小美加法

文章目录 链表BM11 链表相加(二)BM12 单链表的排序归并排序分割 超时辅助数组快排 BM13 判断一个链表是否为回文结构BM14 链表的奇偶重排BM15 删除有序链表中重复的元素-IBM16 删除有序链表中重复的元素-IIJZ35 复杂链表的复制 二分法BM17 二分查找-IBM18 二维数组中的查找BM19…

Git中smart Checkout与force checkout

Git中smart Checkout与force checkout 使用git进行代码版本管理,当我们切换分支有时会遇到这样的问题&#xff1a; 这是因为在当前分支修改了代码&#xff0c;但是没有commit,所以在切换到其他分支的时候会弹出这个窗口&#xff0c; 提示你选force checkout或者smart checko…

Windows11 安装 nvm node版本管理工具

在 Windows 11 上安装并配置 NVM 与 Node.js 版本管理工具 引言&#xff1a; Node.js 是一款强大的开发工具&#xff0c;而版本管理工具 NVM 则可以帮助我们在不同的项目中灵活地切换和管理 Node.js 版本。本篇博客将为大家介绍如何在 Windows 11 操作系统上安装 NVM&#xff…

手机无人直播软件有哪些,又有哪些优势?

如今&#xff0c;随着智能手机的普及和移动互联网的发展&#xff0c;手机无人直播成为了一个炙手可热的领域。手机无人直播软件为用户提供了便捷、灵活的直播方式&#xff0c;让更多商家人能够实现自己的直播带货的梦想。接下来&#xff0c;我们将探讨手机无人直播软件有哪些&a…

【随笔】如何使用阿里云的OSS保存基础的服务器环境

使用阿里云OSS创建一个存储仓库&#xff1a;bucket 在Linux上下载并安装阿里云的ossutil工具 // 命令行&#xff0c;是linux环境 3. 安装ossutil。sudo -v ; curl https://gosspublic.alicdn.com/ossutil/install.sh | sudo bash 说明:安装过程中&#xff0c;需要使用解压工具…

AP9234 9W升压恒流型 DCDC多串LED恒流驱动 2串3串 LED灯串

描述 AP9234是一款由基准电压源、振荡电路、误差放大电路、相位补偿电路、电流限制电路等构成的CMOS升压型DC/DC LED驱动。由于内置了低导通电阻的增强型N沟道功率MOSFET&#xff0c;因此适用于需要高效率、高输出电流的应用电路。另外&#xff0c;可通过在VSENSE端子连接电流…

使用Rust开发命令行工具

生成二进制文件&#xff0c;将其扔到环境变量的path下即可~ 用rust打造实时天气命令行工具[1] 找到合适的API 使用该api[2] 如请求 api.openweathermap.org/data/2.5/weather?qBeijing&appidyour_key: { "coord": { "lon": 116.3972, "lat&quo…

网络直播源码UDP协议搭建:为平台注入一份力量

网络直播源码中的UDP协议的定义&#xff1a; UDP协议又名用户数据报协议&#xff0c;是一种轻量级、无连接的协议。在网络直播源码平台中&#xff0c;UDP协议有着高速传输与实时性的能力&#xff0c;尤其是在网络直播源码实时性要求较高的场景&#xff0c;UDP协议的应用有着重要…

在项目中快速搭建机器学习的流程

在软件开发领域&#xff0c;机器学习框架发挥着关键作用&#xff0c;为开发人员提供强大的人工智能工具、库和算法&#xff0c;以有效地利用机器学习的潜力。从本质上讲&#xff0c;机器学习使计算机能够从数据中学习并做出预测或决策&#xff0c;而无需明确编程。 机器学习框…

CAN总线学习——物理层、数据链路层、CANopen协议

1、CAN总线介绍 1.1、CAN总线描述 (1)CAN总线支持多节点通信&#xff0c;但是节点不分区主从&#xff0c;也就是不存在一个节点来负责维护总线的通信&#xff1b;这点可以和I2C总线对对比&#xff0c;I2C是一主多从模式&#xff1b; (2)是差分、异步、串行总线&#xff0c;采用…

SHELL 基础 入门(三) Bash 快捷键 命令执行顺序,详解通配符

目录 Bash 常用快捷键 输入输出重定向 << 用法 输出重定向 命令执行顺序 ; 分号 && || 通配符 传统通配符 &#xff1f; * [ ] [ - ] [ ^ ] 常用字符 强调 &#xff1a; { } 生成序列 Bash 常用快捷键 Ctrl A 把光…