1. 简介
(1) 使用CPU对向量点乘进行串行计算
(2) 对数据进行分块,使用单进程多卡(多流)并行计算
(3) 使用不同数据规模,比较加速比的变化
2. 代码
#include <stdio.h>
#include <sys/time.h>
#include <stdlib.h>#define CUDA_ERROR_CHECKint nGpus = 1; //gpu数量
int blockSize = 256; //线程块大小
int leftBit = 10; //数据规模左移位数
unsigned long nSize = 1LL << leftBit; //方阵维度
float *hostA = NULL; //向量 A
float *hostB = NULL; //向量 B
float *hostResult = NULL; //串行计算结果
float *deviceResult = NULL; //gpu计算结果//宏定义检查API调用是否出错
#define CudaCall(err) __cudaSafeCall(err,__FILE__,__LINE__)
inline void __cudaSafeCall(cudaError_t err,const char* file,const int line)
{#ifdef CUDA_ERROR_CHECKif(err!=cudaSuccess){fprintf(stderr,"cudaSafeCall failed at %s:%d :(%d) %s\n",file,line,err,cudaGetErrorString(err));exit(-1);}#endif
}//宏定义检查获取流中的执行错误,主要是对核函数
#define CudaCheck() _cudaCheckError(__FILE__,__LINE__)
inline void _cudaCheckError(const char * file,const int line)
{#ifdef CUDA_ERROR_CHECKcudaError_t err = cudaGetLastError();if(err != cudaSuccess){fprintf(stderr,"cudaCheckError failed at %s:%d :(%d) %s\n",file,line,err,cudaGetErrorString(err));exit(-1);}#endif
}//ms
long getTime()
{struct timeval cur;gettimeofday(&cur, NULL);// printf("sec %ld usec %ld,toal ms %ld\n",cur.tv_sec,cur.tv_usec,cur.tv_sec*1e3 + cur.tv_usec / 1e3);return cur.tv_sec*1e3 + cur.tv_usec / 1e3;
}void initData(float *A,float *B,unsigned long len)
{//设置随机数种子srand(0);// len = 10;for(unsigned long i=0;i<len;i++){A[i] = (float)rand()/RAND_MAX;B[i] = (float)rand()/RAND_MAX;// printf("%f %f\n",A[i],B[i]);}
}//cpu 串行计算
long serial(unsigned long len)
{long start = getTime();for(unsigned long i=0;i<len;i++)hostResult[i] = hostA[i] * hostB[i];long end = getTime();// printf("cpu time %d\n",end-start);return end-start;
}__global__ void kernel(float *A,float *B,float *result,unsigned long len)
{unsigned long id = blockIdx.x * blockDim.x + threadIdx.x;if(id<len)result[id] = A[id] * B[id];
}//gpu多卡并行
float gpu_multi(float *result,unsigned long len,int ngpus)
{float gpuTime = 0.0;//对数据分块,每个gpu上开辟内存空间存储数据,并创建一个流,每个GPU计算自己的数据//每个流GPU处理的数据个数unsigned long nPerGpu = len/ngpus;float **deviceA,**deviceB,**deviceResult;deviceA = (float**)calloc(ngpus,sizeof(float*));deviceB = (float**)calloc(ngpus,sizeof(float*));deviceResult = (float**)calloc(ngpus,sizeof(float*));cudaStream_t *streams = (cudaStream_t*)calloc(ngpus,sizeof(cudaStream_t));//在gpu上分配内存空间for(int i=0;i<ngpus;i++){CudaCall(cudaSetDevice(i));CudaCall(cudaMalloc((void**)&deviceA[i],nPerGpu*sizeof(float)));CudaCall(cudaMalloc((void**)&deviceB[i],nPerGpu*sizeof(float)));CudaCall(cudaMalloc((void**)&deviceResult[i],nPerGpu*sizeof(float)));CudaCall(cudaStreamCreate(streams+i));}//事件记录在默认流cudaEvent_t start,end;CudaCall(cudaSetDevice(0));CudaCall(cudaEventCreate(&start));CudaCall(cudaEventCreate(&end));CudaCall(cudaEventRecord(start,streams[0]));for(int i=0;i<ngpus;i++){CudaCall(cudaSetDevice(i));//异步数据拷贝CudaCall(cudaMemcpyAsync(deviceA[i],hostA+i*nPerGpu,nPerGpu*sizeof(float),cudaMemcpyHostToDevice,streams[i]));CudaCall(cudaMemcpyAsync(deviceB[i],hostB+i*nPerGpu,nPerGpu*sizeof(float),cudaMemcpyHostToDevice,streams[i]));//计算int gridDim = (nPerGpu-1)/blockSize + 1;kernel<<<gridDim,blockSize,0,streams[i]>>>(deviceA[i],deviceB[i],deviceResult[i],nPerGpu);CudaCheck();//异步拷贝数据CudaCall(cudaMemcpyAsync(result+i*nPerGpu,deviceResult[i],nPerGpu*sizeof(float),cudaMemcpyDeviceToHost,streams[i]));}CudaCall(cudaSetDevice(0));CudaCall(cudaEventRecord(end,streams[0]));//流同步for(int i=0;i<ngpus;i++){CudaCall(cudaSetDevice(i));CudaCall(cudaStreamSynchronize(streams[i]));}// CudaCall(cudaEventSynchronize(end));CudaCall(cudaEventElapsedTime(&gpuTime,start,end));//freeCudaCall(cudaEventDestroy(start));CudaCall(cudaEventDestroy(end));for(int i=0;i<ngpus;i++){CudaCall(cudaSetDevice(i));CudaCall(cudaFree(deviceA[i]));CudaCall(cudaFree(deviceB[i]));CudaCall(cudaFree(deviceResult[i]));CudaCall(cudaStreamDestroy(streams[i]));}cudaFree(deviceA);cudaFree(deviceB);cudaFree(deviceResult);free(streams);// printf("gpu time %f\n",gpuTime);return gpuTime;
}int main(int argc, char* argv[])
{cudaDeviceProp prop;int globalMemSize = 0;int memSize = 0; //对单卡显存需求大小CudaCall(cudaGetDeviceProperties(&prop ,0));globalMemSize = (float)prop.totalGlobalMem/1024/1024;// printf("compute capability %d.%d\n", prop.major,prop.minor);//k80 3.7// printf("Memory clock rate: %d\n",prop.memoryClockRate);// printf("global memory:%dMB\n",globalMemSize);//获得 device 数量CudaCall(cudaGetDeviceCount(&nGpus));//限制参数设置的最大gpu数量if(argc==3){leftBit = atoi(argv[2]);nSize = 1LL << leftBit;int n = atoi(argv[1]);//当gpu数量设置为3时,nSize%n !=0,使用最大gpu数量计算nGpus = ((n > nGpus || nSize%n !=0)?nGpus:n);memSize = nSize*sizeof(float)*3/nGpus/1024/1024;//判断显存是否够用,k80 单卡可用显存为 11441MBif(memSize > globalMemSize){printf("one gpu memory not enough gater %dMB\n",globalMemSize);exit(-1);}}else{printf("parameter 1:ngpus 2:matrix dim 2^(_)\n");exit(-1);}unsigned long nBytes = nSize * sizeof(float); //单个向量字节数//数据初始化,开辟主机锁页内存// hostA = (float*)calloc(nSize,sizeof(float));// hostB = (float*)calloc(nSize,sizeof(float));// hostResult = (float*)calloc(nSize,sizeof(float));CudaCall(cudaMallocHost((void**)&hostA,nBytes));CudaCall(cudaMallocHost((void**)&hostB,nBytes));CudaCall(cudaMallocHost((void**)&hostResult,nBytes));CudaCall(cudaMallocHost((void**)&deviceResult,nBytes));initData(hostA,hostB,nSize);//串行计算long cpuTime = serial(nSize);//多GPU计算float gpuTime = gpu_multi(deviceResult,nSize,nGpus);printf("单个向量长度 2^%ld,单个显卡三个数组需要显存 %dMB,使用 %d个GPU,cpu串行耗时 %ldms,GPU并行数据传输和计算耗时 %fms,加速比: %f\n",\leftBit,memSize,nGpus,cpuTime,gpuTime,cpuTime/gpuTime);cudaFreeHost(hostA);cudaFreeHost(hostB);cudaFreeHost(hostResult);cudaFreeHost(deviceResult);return 0;
}
3. 测试脚本
#!/bin/bash
# 编译
nvcc pointMul.cu -o pointMul
dir=out
# 清空文件夹
> "$dir"echo "start $(date)" >> out# 串行计算
# for((i=0;i<4;i++)); do
# yhrun -N1 -n1 -pTH_GPU ./matrix_add2D 0 | tee -a "$dir"
# done# 显卡数量
nGpus=(1 2 3 4)
# 数据规模 2^(S)
S=(24 28 30 31)# gpu
for n in "${nGpus[@]}"; dofor s in "${S[@]}"; dofor((i=0;i<3;i++)); doyhrun -N1 -n1 -pTH_GPU ./pointMul "$n" "$s" | tee -a "$dir"donedone
doneecho "end $(date)" >> out
4. 测试数据
由于测试脚本的限制,CPU串行计算在GPU单卡(K80 12G显存)、双卡、四卡测试中分别跑了一轮,数据如下:
数据长度 | gpu单卡(ms) | gpu2个卡(ms) | gpu4个卡(ms) |
---|---|---|---|
2^24 | 44.3 | 44.7 | 44 |
2^28 | 719.7 | 717.3 | 703.3 |
2^30 | - | 2988.7 | 2951.7 |
2^31 | - | - | 5906.7 |
GPU测试耗时及加速比数据:
数据长度 | gpu单卡(ms) | gpu2个卡(ms) | gpu4个卡(ms) |
---|---|---|---|
2^24(耗时/加速比) | 27.9/1.6 | 17.7/2.5 | 17.1/2.6 |
2^28(耗时/加速比) | 399.8/1.8 | 273.6/2.6 | 273.9/2.6 |
2^30(耗时/加速比) | 显存不足 | 985/3.0 | 1056.3/2.8 |
2^31(耗时/加速比) | 显存不足 | 显存不足 | 1942.4/3.0 |
5. 结果分析
(1)GPU比CPU计算有明显的性能提升,根据数据规模,数据量越大提升越明显。
(2)GPU数量越多,计算效率提升越高,数据规模越大,提升越明显。