0、引言
正好做LC每日一题要求实现一个跳表,于是学习了redis的扩展skiplist
,并使用Go进行复刻学习。学习参考了文章:Redis内部数据结构详解(6)——skiplist - 铁蕾的个人博客
因为作者能力有限,本文只是对跳表的核心功能:创建节点与跳表、插入节点、删除节点、获取节点rank、根据rank获取节点、获取分数区间的ele集合进行复刻,其余的需要自己去实现。
1、跳表核心结构
源码的数据结构定义如下:
#define ZSKIPLIST_MAXLEVEL 32
#define ZSKIPLIST_P 0.25/* ZSETs use a specialized version of Skiplists */
typedef struct zskiplistNode {sds ele;double score;struct zskiplistNode *backward;struct zskiplistLevel {struct zskiplistNode *forward;unsigned long span;} level[];
} zskiplistNode;typedef struct zskiplist {struct zskiplistNode *header, *tail;unsigned long length;int level;
} zskiplist;
- 定义了两个常量,一个是跳表的最大层数
ZSKIPLIST_MAXLEVEL
,一个是当前节点含有i+1
层的概率ZSKIPLIST_P
- 跳表节点
zskiplistNode
:ele
,为string类型,存放的是节点的数据score
,存放数据对应的值backward
指向前一个跳表节点,只存在第一层链接中level
存放多层指向下一个节点的指针forawrd
,同时含有一个span
用于表示当前指针跨越了多少个节点,用于实现通过排名查询。注意,span是表示当前层,从header到当前节点跨过的指针数,它不包括指针的起始节点,但是包括终点节点。
- 跳表本身
zskiplist
:header
和tail
,指向跳表首尾的指针length
跳表总节点数level
跳表当前的层数
复刻:
package goskiplistconst (SKIPLIST_MAXLEVEL = 32SKIPLIST_P = 0.25
)type GskiplistLevel struct {forward *GskiplistNodespan uint64
}
type GskiplistNode struct {ele stringscore float64backward *GskiplistNodelevel []GskiplistLevel
}
type Gskiplist struct {header *GskiplistNodetail *GskiplistNodelength uint64level int
}
2、创建跳表节点与跳表
创建跳表节点源码:
zskiplistNode *zslCreateNode(int level, double score, sds ele) {zskiplistNode *zn =zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel));zn->score = score;zn->ele = ele;return zn;
}
复刻:
func createNode(level int, score float64, ele string) *GskiplistNode{node := &GskiplistNode{ele: ele,score: score,level: make([]GskiplistLevel, level),backward: nil,}return node
}
创建跳表源码:
/* Create a new skiplist. */
zskiplist *zslCreate(void) {int j;zskiplist *zsl;zsl = zmalloc(sizeof(*zsl));zsl->level = 1;zsl->length = 0;zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {zsl->header->level[j].forward = NULL;zsl->header->level[j].span = 0;}zsl->header->backward = NULL;zsl->tail = NULL;return zsl;
}
初始化设置了跳表的层数为1、节点数为0、初始化头节点指针,分配内存。注意,头节点并不计算在length中。
经过初始化,创建的跳表如下:
3、向跳表插入节点
源码:
zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) {zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;unsigned long rank[ZSKIPLIST_MAXLEVEL];int i, level;serverAssert(!isnan(score));x = zsl->header;for (i = zsl->level-1; i >= 0; i--) {/* store rank that is crossed to reach the insert position */rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];while (x->level[i].forward &&(x->level[i].forward->score < score ||(x->level[i].forward->score == score &&sdscmp(x->level[i].forward->ele,ele) < 0))){rank[i] += x->level[i].span;x = x->level[i].forward;}update[i] = x;}/* we assume the element is not already inside, since we allow duplicated* scores, reinserting the same element should never happen since the* caller of zslInsert() should test in the hash table if the element is* already inside or not. */level = zslRandomLevel();if (level > zsl->level) {for (i = zsl->level; i < level; i++) {rank[i] = 0;update[i] = zsl->header;update[i]->level[i].span = zsl->length;}zsl->level = level;}x = zslCreateNode(level,score,ele);for (i = 0; i < level; i++) {x->level[i].forward = update[i]->level[i].forward;update[i]->level[i].forward = x;/* update span covered by update[i] as x is inserted here */x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);update[i]->level[i].span = (rank[0] - rank[i]) + 1;}/* increment span for untouched levels */for (i = level; i < zsl->level; i++) {update[i]->level[i].span++;}x->backward = (update[0] == zsl->header) ? NULL : update[0];if (x->level[0].forward)x->level[0].forward->backward = x;elsezsl->tail = x;zsl->length++;return x;
}
zslInsert
主要实现了向跳表中插入一个节点,节点的值为ele
,分数为score
。
解析:
(1)创建数组与断言检查
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned long rank[ZSKIPLIST_MAXLEVEL];
int i, level;
serverAssert(!isnan(score));
x = zsl->header;
*update[]
用于记录每一层插入的位置,update[i]
表示节点在第i层,应该插入在update[i]
节点之后。rank[]
用于记录每一层的跨度,rank[i]
表示从第i层,跳到update[i]节点的跨度。使用了前缀和的思想。*x
用于节点的遍历serverAssert
用于判断数值是否异常
(2)查找插入位置
for (i = zsl->level-1; i >= 0; i--) {/* store rank that is crossed to reach the insert position */rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];while (x->level[i].forward &&(x->level[i].forward->score < score ||(x->level[i].forward->score == score &&sdscmp(x->level[i].forward->ele,ele) < 0))){rank[i] += x->level[i].span;x = x->level[i].forward;}update[i] = x;}
i从当前跳表的最高层向下遍历。在每一次遍历中:
- rank[i]初始赋值上一层的结果,若为最高层则赋值0
- 若当前层的当前节点存在下一节点,并且分数<新节点分数(从小到大排序)或者分数相同但字典序要小,则累加下一步的跨度,并且移动结点至下一结点。
- 找到当前层应该插入的位置后,记录这个结点。
加入目前跳表结构如下:
我们想要插入的新节点ele为“e”,score为“75”。那么经过更新后:
- rank[1] = 3,update[1] = c
- rank[0] = 3,update[0] = c
(3)设定新节点最大层数
level = zslRandomLevel();if (level > zsl->level) {for (i = zsl->level; i < level; i++) {rank[i] = 0;update[i] = zsl->header;update[i]->level[i].span = zsl->length;}zsl->level = level;}
使用zslRandomLevel
函数设定新节点的最高层数。如果这个最高层数大于目前跳表的层数,那么就需要设定新高层的rank和update。
zslRandomLevel
的实现如下:
int zslRandomLevel(void) {static const int threshold = ZSKIPLIST_P*RAND_MAX;int level = 1;while (random() < threshold)level += 1;return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
}
通过将浮点数映射至整数,可以加快运算效率。
假设我们要插入的(“e”,75)节点生成的层数为3,经历上述操作后,跳表结构如下:
(4)插入新节点和更新跨度
x = zslCreateNode(level,score,ele);for (i = 0; i < level; i++) {x->level[i].forward = update[i]->level[i].forward;update[i]->level[i].forward = x;/* update span covered by update[i] as x is inserted here */x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);update[i]->level[i].span = (rank[0] - rank[i]) + 1;}
/* increment span for untouched levels */for (i = level; i < zsl->level; i++) {update[i]->level[i].span++;}
调整每一层的要插入的位置的前一个节点的指针指向,并且更新span。
假设在第i层,我们称update[i]
为pre
,未更新前pre的下一个节点未next
,那么因为要在pre和next之间插入新的节点,更新pre的span为pre到next的距离-cur到next的距离。更新cur的span为cur到next的距离。
第二个循环是为了更新当前节点的更高层未更新节点的span值。
经过这一次调整,如图:
这里我画图用于形象的表示span的计算过程,它采用了前缀和的方式:
(5)更新新节点的前指针
x->backward = (update[0] == zsl->header) ? NULL : update[0];if (x->level[0].forward)x->level[0].forward->backward = x;elsezsl->tail = x;zsl->length++;return x;
如果update[0]不是头节点,那么它就是x的前一个节点。如果x的后节点存在,则更新x的后节点的前指针指向x,否则x是末尾节点,让tail指向它。
复刻Go源码:
// 向跳表插入一个节点,同时返回插入好的节点。
// ele不能为空串,否则返回nil。
func (this *Gskiplist) Insert(score float64, ele string) *GskiplistNode {if ele == "" {return nil}update := make([]*GskiplistNode, SKIPLIST_MAXLEVEL)rank := make([]uint64, SKIPLIST_MAXLEVEL)var x *GskiplistNodex = this.header//更新update以及rankfor i := this.level - 1; i >= 0; i-- {rank[i] = 0if i != this.level-1 {rank[i] = rank[i+1]}for x.level[i].forward != nil &&(x.level[i].forward.score < score ||(x.level[i].forward.score == score && x.level[i].forward.ele < ele)) {rank[i] += x.level[i].spanx = x.level[i].forward}update[i] = x}level := this.randomLevel()//更新最大层数if level > this.level {for i := this.level; i < level; i++ {rank[i] = 0update[i] = this.headerupdate[i].level[i].span = this.length}this.level = level}x = createNode(level, score, ele)//插入操作for i := 0; i < level; i++ {x.level[i].forward = update[i].level[i].forwardupdate[i].level[i].forward = x//更新x和前一个节点的spanx.level[i].span = update[i].level[i].span - (rank[0] - rank[i])update[i].level[i].span = (rank[0] - rank[i]) + 1}//更新更高层for i := level; i < this.level; i++ {update[i].level[i].span++}//更新前节点指针指向x.backward = nilif update[0] != this.header {x.backward = update[0]}if x.level[0].forward != nil {x.level[0].forward.backward = x} else {this.tail = x}this.length++return x
}
4、删除跳表节点
void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {int i;for (i = 0; i < zsl->level; i++) {if (update[i]->level[i].forward == x) {update[i]->level[i].span += x->level[i].span - 1;update[i]->level[i].forward = x->level[i].forward;} else {update[i]->level[i].span -= 1;}}if (x->level[0].forward) {x->level[0].forward->backward = x->backward;} else {zsl->tail = x->backward;}while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL)zsl->level--;zsl->length--;
}int zslDelete(zskiplist *zsl, double score, sds ele, zskiplistNode **node) {zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;int i;x = zsl->header;for (i = zsl->level-1; i >= 0; i--) {while (x->level[i].forward &&(x->level[i].forward->score < score ||(x->level[i].forward->score == score &&sdscmp(x->level[i].forward->ele,ele) < 0))){x = x->level[i].forward;}update[i] = x;}/* We may have multiple elements with the same score, what we need* is to find the element with both the right score and object. */x = x->level[0].forward;if (x && score == x->score && sdscmp(x->ele,ele) == 0) {zslDeleteNode(zsl, x, update);if (!node)zslFreeNode(x);else*node = x;return 1;}return 0; /* not found */
}
先来看zslDelete
:它是删除节点的最上层,update的更新方法与插入一致。接着就是删除score和ele相同的节点,其中node参数用于提供保存删除节点的作用。在Go语言的复刻中,我们可以直接返回node和是否删除成功。
再看zslDeleteNode
,它是删除节点的下游具体实现,具体细节如下:
- 逐层删除x,如果当前层有x,则需要将前一个节点的后指针指向x的后指针,然后更新前一个节点的span;否则只用更新span
- 如果x的后节点存在,则更新后节点的backward指针,否则修改跳表的tail。
- 如果存在高层,在删除x后为空层,要修改跳表的层数。
- 减去一个length
Go复刻如下:
//删除节点,返回这个节点以及是否成功
func (this *Gskiplist) Delete(score float64, ele string) (*GskiplistNode, bool) {update := make([]*GskiplistNode, SKIPLIST_MAXLEVEL)var x *GskiplistNodex = this.headerfor i := this.level - 1; i >= 0; i-- {for x.level[i].forward != nil &&(x.level[i].forward.score < score ||(x.level[i].forward.score == score && x.level[i].forward.ele < ele)) {x = x.level[i].forward}update[i] = x}x = x.level[0].forward//从底层删除if x != nil && x.score == score && x.ele == ele {this.deleteNode(x, update)return x, true}//未找到对应节点return nil, false
}func (this *Gskiplist) deleteNode(x *GskiplistNode, update []*GskiplistNode) {for i := 0; i < this.level; i++ {if update[i].level[i].forward == x {//在这一层,存在xupdate[i].level[i].span += x.level[i].span - 1update[i].level[i].forward = x.level[i].forward} else {//不存在则只更新spanupdate[i].level[i].span--}}if x.level[0].forward != nil {x.level[0].forward.backward = x.backward} else {this.tail = x.backward}//若x独占高层,需要逐个清除for this.level > 1 && this.header.level[this.level-1].forward == nil {this.level--}this.length--
}
5、获取节点的rank
unsigned long zslGetRank(zskiplist *zsl, double score, sds ele) {zskiplistNode *x;unsigned long rank = 0;int i;x = zsl->header;for (i = zsl->level-1; i >= 0; i--) {while (x->level[i].forward &&(x->level[i].forward->score < score ||(x->level[i].forward->score == score &&sdscmp(x->level[i].forward->ele,ele) <= 0))) {rank += x->level[i].span;x = x->level[i].forward;}/* x might be equal to zsl->header, so test if obj is non-NULL */if (x->ele && x->score == score && sdscmp(x->ele,ele) == 0) {return rank;}}return 0;
}
从高层逐个寻找,找到即返回。
6、根据排名获取节点
/* Finds an element by its rank from start node. The rank argument needs to be 1-based. */
zskiplistNode *zslGetElementByRankFromNode(zskiplistNode *start_node, int start_level, unsigned long rank) {zskiplistNode *x;unsigned long traversed = 0;int i;x = start_node;for (i = start_level; i >= 0; i--) {while (x->level[i].forward && (traversed + x->level[i].span) <= rank){traversed += x->level[i].span;x = x->level[i].forward;}if (traversed == rank) {return x;}}return NULL;
}/* Finds an element by its rank. The rank argument needs to be 1-based. */
zskiplistNode *zslGetElementByRank(zskiplist *zsl, unsigned long rank) {return zslGetElementByRankFromNode(zsl->header, zsl->level - 1, rank);
}
Go复刻:
// 根据排名获取节点
func (this *Gskiplist) GetElementByRank(rank uint64) *GskiplistNode {return this.getElementByRankFromNode(this.header, this.level-1, rank)
}
func (this *Gskiplist) getElementByRankFromNode(startNode *GskiplistNode, startLevel int, rank uint64) *GskiplistNode {x := startNodevar traversed uint64for i := startLevel; i >= 0; i-- {for x.level[i].forward != nil && traversed+x.level[i].span <= rank {traversed += x.level[i].spanx = x.level[i].forward}//遍历完一层,查看是否到达if traversed == rank {return x}}return nil
}
7、根据分数区间获取数据集合
现在,我们能很轻易的实现根据分数区间获取数据集合的功能。
// 根据分数区间获取数据集合,返回数据的ele集合
func (this *Gskiplist) GetElementsRangeByScore(low float64, high float64) (ans []string) {x := this.headervar i intfor i = this.level - 1; i >= 0; i-- {for x.level[i].forward != nil && x.level[i].forward.score < low {x = x.level[i].forward}}x = x.level[0].forwardfor x != nil && x.score <= high {ans = append(ans, x.ele)x = x.level[0].forward}return ans
}
到这里为止,对skiplist的核心功能就复刻完成了,剩余的根据需要可以自己探索。