多模态是每个LLM具有的能力,图片又是最常见的信息载体,GPT对图片的识别也很早就有了,随着GPT版本的迭代,效果越来越好。SK也是在很多就适配了图识文,只不过最近版本才支持本地图片的上传。(有点晚)
图片场景识别:
using Microsoft.SemanticKernel.ChatCompletion; using Microsoft.SemanticKernel; using Microsoft.SemanticKernel.Connectors.OpenAI;var chatModelId = "gpt-4o"; var key = File.ReadAllText(@"C:\GPT\key.txt"); #pragma warning disable SKEXP0070 #pragma warning disable SKEXP0010 #pragma warning disable SKEXP0001 #pragma warning disable SKEXP0110 var kernel = Kernel.CreateBuilder().AddOpenAIChatCompletion(chatModelId, key).Build();var chat = kernel.GetRequiredService<IChatCompletionService>(); var chatHistory = new ChatHistory(); chatHistory.AddUserMessage(new ChatMessageContentItemCollection {new TextContent("请说明这是那里,什么样的天气,大家在干什么?一共有多少人"),new ImageContent(File.ReadAllBytes("tam.jpg"),"image/jpeg") }); var settings = new Dictionary<string, object> {["max_tokens"] = 1000,["temperature"] = 0.2,["top_p"] = 0.8,["presence_penalty"] = 0.0,["frequency_penalty"] = 0.0 };var content = chat.GetStreamingChatMessageContentsAsync(chatHistory, new PromptExecutionSettings {ExtensionData = settings }); await foreach (var item in content) {Console.Write(item.Content); } Console.ReadLine();
图片:
结果:
文字识别:
using Microsoft.SemanticKernel.ChatCompletion; using Microsoft.SemanticKernel; using Microsoft.SemanticKernel.Connectors.OpenAI;var chatModelId = "gpt-4o"; var key = File.ReadAllText(@"C:\GPT\key.txt"); #pragma warning disable SKEXP0070 #pragma warning disable SKEXP0010 #pragma warning disable SKEXP0001 #pragma warning disable SKEXP0110 var kernel = Kernel.CreateBuilder().AddOpenAIChatCompletion(chatModelId, key).Build();var chat = kernel.GetRequiredService<IChatCompletionService>(); var chatHistory = new ChatHistory(); chatHistory.AddUserMessage(new ChatMessageContentItemCollection {new TextContent("请识别图片上的文字,并输出"),new ImageContent(File.ReadAllBytes("japancard.png"),"image/jpeg") }); var settings = new Dictionary<string, object> {["max_tokens"] = 1000,["temperature"] = 0.2,["top_p"] = 0.8,["presence_penalty"] = 0.0,["frequency_penalty"] = 0.0 };var content = chat.GetStreamingChatMessageContentsAsync(chatHistory, new PromptExecutionSettings {ExtensionData = settings }); await foreach (var item in content) {Console.Write(item.Content); } Console.ReadLine();
图片:
结果:
文章来源微信公众号
想要更快更方便的了解相关知识,可以关注微信公众号