在 PyTorch 中训练多个模型(agents)并通过任务编排自由组合形成解决方案,可按以下步骤实现:
1. 定义多个模型
首先,需要定义多个不同的 PyTorch 模型,这些模型可以是不同架构、不同功能的。以下是一个简单示例,定义两个不同的全连接神经网络模型:
import torch
import torch.nn as nn# 定义第一个模型
class Model1(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(Model1, self).__init__()self.fc1 = nn.Linear(input_size, hidden_size)self.relu = nn.ReLU()self.fc2 = nn.Linear(hidden_size, output_size)def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return out# 定义第二个模型
class Model2(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(Model2, self).__init__()self.fc1 = nn.Linear(input_size, hidden_size)self.sigmoid = nn.Sigmoid()self.fc2 = nn.Linear(hidden_size, output_size)def forward(self, x):out = self.fc1(x)out = self.sigmoid(out)out = self.fc2(out)return out# 初始化模型
input_size = 10
hidden_size = 20
output_size = 2
model1 = Model1(input_size, hidden_size, output_size)
model2 = Model2(input_size, hidden_size, output_size)
2. 训练多个模型
分别对这些模型进行训练,每个模型可以有不同的训练数据、损失函数和优化器。
import torch.optim as optim# 定义训练数据
train_data = torch.randn(100, input_size)
train_labels = torch.randint(0, output_size, (100,))# 定义损失函数和优化器
criterion1 = nn.CrossEntropyLoss()
optimizer1 = optim.SGD(model1.parameters(), lr=0.01)criterion2 = nn.CrossEntropyLoss()
optimizer2 = optim.SGD(model2.parameters(), lr=0.01)# 训练模型 1
num_epochs = 10
for epoch in range(num_epochs):optimizer1.zero_grad()outputs1 = model1(train_data)loss1 = criterion1(outputs1, train_labels)loss1.backward()optimizer1.step()print(f'Epoch {epoch + 1}, Model 1 Loss: {loss1.item()}')# 训练模型 2
for epoch in range(num_epochs):optimizer2.zero_grad()outputs2 = model2(train_data)loss2 = criterion2(outputs2, train_labels)loss2.backward()optimizer2.step()print(f'Epoch {epoch + 1}, Model 2 Loss: {loss2.item()}')
3. 任务编排与模型组合
通过任务编排,可以根据不同的需求自由组合这些模型。例如,可以将两个模型的输出进行融合,或者根据不同的条件选择使用不同的模型。
# 任务编排示例:将两个模型的输出进行平均融合
test_data = torch.randn(10, input_size)
with torch.no_grad():outputs1 = model1(test_data)outputs2 = model2(test_data)combined_output = (outputs1 + outputs2) / 2_, predicted = torch.max(combined_output, 1)print('Combined Model Predictions:', predicted)# 任务编排示例:根据条件选择模型
condition = True # 模拟条件
if condition:with torch.no_grad():outputs = model1(test_data)_, predicted = torch.max(outputs, 1)print('Model 1 Predictions:', predicted)
else:with torch.no_grad():outputs = model2(test_data)_, predicted = torch.max(outputs, 1)print('Model 2 Predictions:', predicted)
4. 封装为可复用的解决方案
为了使模型组合更加灵活和可复用,可以将模型组合的逻辑封装成函数或类。
class ModelCombiner:def __init__(self, model1, model2):self.model1 = model1self.model2 = model2def combine_by_average(self, data):with torch.no_grad():outputs1 = self.model1(data)outputs2 = self.model2(data)combined_output = (outputs1 + outputs2) / 2_, predicted = torch.max(combined_output, 1)return predicteddef select_by_condition(self, data, condition):with torch.no_grad():if condition:outputs = self.model1(data)else:outputs = self.model2(data)_, predicted = torch.max(outputs, 1)return predicted# 使用封装的类进行模型组合
combiner = ModelCombiner(model1, model2)
combined_prediction = combiner.combine_by_average(test_data)
print('Combined Prediction using class:', combined_prediction)condition = False
selected_prediction = combiner.select_by_condition(test_data, condition)
print('Selected Prediction using class:', selected_prediction)
通过以上步骤,你可以在 PyTorch 中训练多个模型,并通过任务编排自由组合这些模型形成灵活的解决方案。