继deepseek之后,武汉一个开发monica的团队又开发了manus,号称是全球第一个通用的agent!各路自媒体企图复刻下一个deepseek,疯狂报道!然而manus发布后不久,metaGPT团队5个工程师号称耗时3小时就搞定了一个demo版本的manus,取名openManus,才几天时间就收获了34.4K的start,又火出圈了!今天就研究一下openManus的核心原理!
1、先说说为什么要agent:
- 目前的LLM只能做决策,无法落地实施,所以还需要外部的tool具体干活
- 目前的LLM虽然已经有各种COT,但纯粹依靠LLM自己完成整个链条是不行的,还是需要人为介入做plan、action、review等工作
所以agent诞生了!不管是deep search、deep research、manus等,核心思路都是一样的:plan->action->review->action->review...... 如此循环下去,直到触发结束的条件!大概的流程如下:
具体到openManus,核心的流程是这样的:用户输入prompt后,有专门的agent调用LLM针对prompt做任务拆分,把复杂的问题拆解成一个个细分的、逻辑连贯的小问题,然后对于这些小问题,挨个调用tool box的工具执行,最后返回结果给用户!
这类通用agent最核心的竞争力就两点了:
- plan是否准确:这个主要看底层LLM的能力,对prompt做命名实体识别和意图识别!
- tool box的工具是否丰富:用户的需求是多样的,tool是否足够满足用户需求?
2、先来看看openManus的目录结构:4个文件夹,分别是agent、flow、prompt、tool,只看名字就知道这个模块的功能了!
整个程序入口肯定是各种agent啦!各大agent之间的关系如下:
(1)agent核心的功能之一不就是plan么,openManus的prompt是这么干的:promt中就直接说明了是expert plan agent,需要生成可执行的plan!
PLANNING_SYSTEM_PROMPT = """ You are an expert Planning Agent tasked with solving problems efficiently through structured plans. Your job is: 1. Analyze requests to understand the task scope 2. Create a clear, actionable plan that makes meaningful progress with the `planning` tool 3. Execute steps using available tools as needed 4. Track progress and adapt plans when necessary 5. Use `finish` to conclude immediately when the task is completeAvailable tools will vary by task but may include: - `planning`: Create, update, and track plans (commands: create, update, mark_step, etc.) - `finish`: End the task when complete Break tasks into logical steps with clear outcomes. Avoid excessive detail or sub-steps. Think about dependencies and verification methods. Know when to conclude - don't continue thinking once objectives are met. """NEXT_STEP_PROMPT = """ Based on the current state, what's your next action? Choose the most efficient path forward: 1. Is the plan sufficient, or does it need refinement? 2. Can you execute the next step immediately? 3. Is the task complete? If so, use `finish` right away.Be concise in your reasoning, then select the appropriate tool or action. """
prompt有了,接着就是让LLM对prompt生成plan了,在agent/planning.py文件中:
async def create_initial_plan(self, request: str) -> None:"""Create an initial plan based on the request."""logger.info(f"Creating initial plan with ID: {self.active_plan_id}")messages = [Message.user_message(f"Analyze the request and create a plan with ID {self.active_plan_id}: {request}")]self.memory.add_messages(messages)response = await self.llm.ask_tool(messages=messages,system_msgs=[Message.system_message(self.system_prompt)],tools=self.available_tools.to_params(),tool_choice=ToolChoice.AUTO,)assistant_msg = Message.from_tool_calls(content=response.content, tool_calls=response.tool_calls)self.memory.add_message(assistant_msg)plan_created = Falsefor tool_call in response.tool_calls:if tool_call.function.name == "planning":result = await self.execute_tool(tool_call)logger.info(f"Executed tool {tool_call.function.name} with result: {result}")# Add tool response to memorytool_msg = Message.tool_message(content=result,tool_call_id=tool_call.id,name=tool_call.function.name,)self.memory.add_message(tool_msg)plan_created = Truebreakif not plan_created:logger.warning("No plan created from initial request")tool_msg = Message.assistant_message("Error: Parameter `plan_id` is required for command: create")self.memory.add_message(tool_msg)
plan生成后,就是think和act的循环啦!同理,这部分实现代码在agent/toolcall.py中,如下:think的功能是让LLM选择干活的工具,act负责调用具体的工具执行
async def think(self) -> bool:"""Process current state and decide next actions using tools"""if self.next_step_prompt:user_msg = Message.user_message(self.next_step_prompt)self.messages += [user_msg]# Get response with tool options:让LLM选择使用哪种工具干活response = await self.llm.ask_tool(messages=self.messages,system_msgs=[Message.system_message(self.system_prompt)]if self.system_promptelse None,tools=self.available_tools.to_params(),tool_choice=self.tool_choices,)self.tool_calls = response.tool_calls# Log response infologger.info(f"✨ {self.name}'s thoughts: {response.content}")logger.info(f"🛠️ {self.name} selected {len(response.tool_calls) if response.tool_calls else 0} tools to use")if response.tool_calls:logger.info(f"🧰 Tools being prepared: {[call.function.name for call in response.tool_calls]}")try:# Handle different tool_choices modesif self.tool_choices == ToolChoice.NONE:if response.tool_calls:logger.warning(f"🤔 Hmm, {self.name} tried to use tools when they weren't available!")if response.content:self.memory.add_message(Message.assistant_message(response.content))return Truereturn False# Create and add assistant messageassistant_msg = (Message.from_tool_calls(content=response.content, tool_calls=self.tool_calls)if self.tool_callselse Message.assistant_message(response.content))self.memory.add_message(assistant_msg)if self.tool_choices == ToolChoice.REQUIRED and not self.tool_calls:return True # Will be handled in act()# For 'auto' mode, continue with content if no commands but content existsif self.tool_choices == ToolChoice.AUTO and not self.tool_calls:return bool(response.content)return bool(self.tool_calls)except Exception as e:logger.error(f"🚨 Oops! The {self.name}'s thinking process hit a snag: {e}")self.memory.add_message(Message.assistant_message(f"Error encountered while processing: {str(e)}"))return Falseasync def act(self) -> str:"""Execute tool calls and handle their results"""if not self.tool_calls:if self.tool_choices == ToolChoice.REQUIRED:raise ValueError(TOOL_CALL_REQUIRED)# Return last message content if no tool callsreturn self.messages[-1].content or "No content or commands to execute"results = []for command in self.tool_calls:result = await self.execute_tool(command)#调用具体的工具干活if self.max_observe:result = result[: self.max_observe]logger.info(f"🎯 Tool '{command.function.name}' completed its mission! Result: {result}")# Add tool response to memorytool_msg = Message.tool_message(content=result, tool_call_id=command.id, name=command.function.name)self.memory.add_message(tool_msg)results.append(result)return "\n\n".join(results)
think和act是循环执行的,直到满足停止条件,这部分功能在agent/base.py实现的:
async def run(self, request: Optional[str] = None) -> str:"""Execute the agent's main loop asynchronously.Args:request: Optional initial user request to process.Returns:A string summarizing the execution results.Raises:RuntimeError: If the agent is not in IDLE state at start."""if self.state != AgentState.IDLE:raise RuntimeError(f"Cannot run agent from state: {self.state}")if request:self.update_memory("user", request)results: List[str] = []async with self.state_context(AgentState.RUNNING):while ( # 循环停止的条件:达到最大步数,或agent的状态已经是完成的了self.current_step < self.max_steps and self.state != AgentState.FINISHED):self.current_step += 1logger.info(f"Executing step {self.current_step}/{self.max_steps}")step_result = await self.step()# Check for stuck stateif self.is_stuck():self.handle_stuck_state()results.append(f"Step {self.current_step}: {step_result}")if self.current_step >= self.max_steps:self.current_step = 0self.state = AgentState.IDLEresults.append(f"Terminated: Reached max steps ({self.max_steps})")return "\n".join(results) if results else "No steps executed"
既然是while循环迭代,那每次迭代又有啥不一样的了?举个例子:查找AI最新的新闻,并保存到文件中。第一次think,调用LLM的时候输入用户的prompt和相应的人设、能使用的tool,让LLM自己选择一个合适的tool,并输出到response中!这里的LLM选择了google search去查找新闻,并提供了google search的query!
第二次think,给LLM输入的prompt带上了第一轮的prompt和response,类似多轮对话,把多个context收集到一起作为这次的最新的prompt,让LLM继续输出结果,也就是第三次的action是啥!
第三次think:同样包含前面两次的promt!但这次LLM反馈已经不需要调用任何工具了,所以这个query至此已经完全结束!
整个流程简单!另外,用户也可以添加自己的tool,只要符合MCP协议就行!
参考:
1、https://github.com/mannaandpoem/OpenManus/blob/main/README_zh.md
2、https://www.bilibili.com/video/BV1WzQPYWEGY/?spm_id_from=333.1007.tianma.8-3-29.click&vd_source=241a5bcb1c13e6828e519dd1f78f35b2 openmanus核心代码解读