一键实现 Oracle 数据整库同步至 Apache Doris

在实时数据仓库建设或迁移的过程中,用户必须考虑如何高效便捷将关系数据库数据同步到实时数仓中来,Apache Doris 用户也面临这样的挑战。而对于从 Oracle 到 Doris 的数据同步,通常会用到以下两种常见的同步方式:

OGG/XStream/LogMiner 工具: 通过该方式先将数据同步到 Kafka 中,然后通过 Routine Load 消费 Kafka 中的数据进行实时同步。这种方式的同步链路相对较长,特别是在上游数据表较多的情况下,需要手动创建大量的 Routine Load 作业,同步流程不仅繁琐,也给用户增加了较大的使用及维护压力。

FlinkCDC: 该方式虽然可以直接将上游数据同步到 Doris 中,并在一定程度上缩短了同步链路,实际在使用过程中还会遇到以下问题:

  • 数据同步时,需要在 Flink 中对每张表手动配置参数及字段映射,尤其是在多表或整库同步场景中,不仅带来大量配置工作量,还增加了 FlinkSQL 脚本的维护成本。
  • 数据同步时,需要事先在 Doris 中手动逐个创建表,而面对数量庞大的上游表时,手动创建表不仅耗费时间,而且工作效率很低,间接影响数据同步的效率。
  • 由于每张 Source 表都会使用同一个链接,因此在整库同步时会给源端造成很大的链接压力。

为了解决上述问题,在新版本的 Doris-Flink-Connector  中,我们实现了 FlinkCDC 的 Datastream API 集成,无需提前在 Doris 中创建表以及映射关系,仅仅通过简单的参数配置就能一键完成从 Oracle 等关系型数据库到 Apache Doris 的整库数据同步。

此外,Doris-Flink-Connector 也可以一键实现万表 MySQL 整库同步至 Apache Doris 中来,具体使用可参考:一键实现万表 MySQL 整库同步至 Apache Doris

同步流程 & 实战演示


在进行整库同步前,我们先了解一下具体同步流程:

oracle.png

  • 在启动 Flink 任务之前,Doris-Flink-Connector  会自动读取需要同步的 Oracle 表的元数据信息,并自动在 Doris 中创建相应的表。
  • 通过 FlinkCDC 提供的 OracleSource 功能,能够从 Oracle 数据库中读取数据,并将其传递到下游进行处理。
  • 通过 Flink 的侧输出流功能,根据自定义规则将数据分流到不同的 Doris Sink 中,并同步到 Doris 中来。

通过以上简单操作,即可实现上游 Oracle 数据库的整库数据实时数据接入到 Apache Doris 中。接下来我们通过一个实际案例来详细说明具体的操作步骤:

01  Oracle 环境准备

# 拉取镜像
docker pull registry.cn-hangzhou.aliyuncs.com/helowin/oracle_11g# 启动镜像
docker run -it -d \
--privileged \
-p 1521:1521 \
--name oracle11g \
-e ORACLE_ALLOW_REMOTE=true \
-v /mnt/disk1/oracle:/data/oracle \
registry.cn-hangzhou.aliyuncs.com/helowin/oracle_11g# 进入容器
docker exec -it oracle11g bash

Oracle 归档日志(Binlog)配置:启动归档日志时,需对日志大小和存放地址进行设置,设置完成需进行重启。该步骤完成后才可进行后续增量数据的同步。

# 进入SQL命令行
[oracle@ef6d9de18e59 ~]$ sqlplus /nolog
SQL> conn /as sysdba
Connected.SQL> alter system set db_recovery_file_dest_size = 10G;
System altered.SQL> alter system set db_recovery_file_dest = '/home/oracle/oracle-data' scope=spfile;
System altered.SQL> shutdown immediate;
Database closed.
Database dismounted.
ORACLE instance shut down.SQL> startup mount;
ORACLE instance started.
Total System Global Area 1603411968 bytes
Fixed Size                  2213776 bytes
Variable Size             402655344 bytes
Database Buffers         1174405120 bytes
Redo Buffers               24137728 bytes
Database mounted.SQL> alter database archivelog;
Database altered.SQL> alter database open;
Database altered.
# 检查日志归档是否开启
SQL> archive log list;
Database log mode              Archive Mode
Automatic archival             Enabled
Archive destination            USE_DB_RECOVERY_FILE_DEST
Oldest online log sequence     1
Next log sequence to archive   1
Current log sequence           1# 启用补充日志记录
SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
Database altered.#创建用户
CREATE USER admin IDENTIFIED BY admin123;
GRANT dba TO admin;

数据准备

[oracle@ef6d9de18e59 ~]$ sqlplus admin/admin123 
SQL> CREATE TABLE PERSONS(ID NUMBER(10),NAME VARCHAR2(128) NOT NULL,PRIMARY KEY(ID));
Table created.SQL> INSERT INTO "PERSONS" VALUES (1, 'zhangsan');
SQL> INSERT INTO "PERSONS" VALUES (2, 'lisi');
SQL> INSERT INTO "PERSONS" VALUES (3, 'wangwu');SQL> CREATE TABLE PERSONS_1(ID NUMBER(10),NAME VARCHAR2(128) NOT NULL,PRIMARY KEY(ID));
Table created.SQL> INSERT INTO "PERSONS_1" VALUES (1, 'zhangsan');
SQL> INSERT INTO "PERSONS_1" VALUES (2, 'lisi');
SQL> INSERT INTO "PERSONS_1" VALUES (3, 'wangwu');

02  Flink 环境配置

将 FlinkCDC-Oracle 的依赖和 Doris-Flink-Connector 包放到 Flink 的 lib 目录下,同时启动 Flink 集群。

# 下载相关依赖
wget https://repo.maven.apache.org/maven2/com/ververica/flink-sql-connector-oracle-cdc/2.3.0/flink-sql-connector-oracle-cdc-2.3.0.jar
wget https://repository.apache.org/content/repositories/snapshots/org/apache/doris/flink-doris-connector-1.16/1.5.0-SNAPSHOT/flink-doris-connector-1.16-1.5.0-20230811.065053-1.jar -O flink-doris-connector-1.16-1.5.0-SNAPSHOT.jar# 启动Flink集群
bin/start-cluster.sh

03  一键提交整库同步作业

本次同步以 PERSON 开头的所有的表。

<FLINK_HOME>/bin/flink run \-Dexecution.checkpointing.interval=10s \-Dparallelism.default=1 \-c org.apache.doris.flink.tools.cdc.CdcTools \./lib/flink-doris-connector-1.16-1.5.0-SNAPSHOT.jar \oracle-sync-database \--database test_db \--oracle-conf hostname=127.0.0.1 \--oracle-conf port=1521 \--oracle-conf username=admin \--oracle-conf password=admin123 \--oracle-conf database-name=HELOWIN \--oracle-conf schema-name=ADMIN \--including-tables "PERSONS.*" \--sink-conf fenodes=127.0.0.1:8030 \--sink-conf username=root \--sink-conf password=\--sink-conf jdbc-url=jdbc:mysql://127.0.0.1:9030 \--sink-conf sink.label-prefix=label \--table-conf replication_num=1

详细参数可参考:https://doris.apache.org/zh-CN/docs/dev/ecosystem/flink-doris-connector

提交成功后,可以在 FlinkWeb 上看到该同步任务的状态。

oracle2.png

进入 Doris 可以查看自动创建的表以及同步成功的全量数据。

mysql> use test_db;                                                                                                                                        
Reading table information for completion of table and column names                                                                                         
You can turn off this feature to get a quicker startup with -A                                                                                             Database changed                                                                                                                                           
mysql> show tables;                                                                                                                                        
+-------------------+                                                                                                                                      
| Tables_in_test_db |                                                                                                                                      
+-------------------+                                                                                                                                      
| PERSONS           |                                                                                                                                      
| PERSONS_1         |                                                                                                                                      
+-------------------+                                                                                                                                      
2 rows in set (0.00 sec)                                                                                                                                   mysql> select * from PERSONS;                                                                                                                              
+------+----------+                                                                                                                                        
| ID   | NAME     |                                                                                                                                        
+------+----------+                                                                                                                                        
|    2 | lisi     |                                                                                                                                        
|    3 | wangwu   |                                                                                                                                        
|    1 | zhangsan |                                                                                                                                        
+------+----------+                                                                                                                                        
3 rows in set (0.01 sec)                                                                                                                                   mysql> select * from PERSONS_1;                                                                                                                            
+------+----------+                                                                                                                                        
| ID   | NAME     |                                                                                                                                        
+------+----------+                                                                                                                                        
|    2 | lisi     |                                                                                                                                        
|    3 | wangwu   |                                                                                                                                        
|    1 | zhangsan |                                                                                                                                        
+------+----------+                                                                                                                                        
3 rows in set (0.01 sec)

在 Oracle 中模拟实时增删改数据

INSERT INTO PERSONS VALUES(4,'doris');
UPDATE PERSONS SET name = 'zhangsan-update' WHERE ID =1;
DELETE PERSONS WHERE ID =2; 

在 Doris 中进行验证,可以确认增量数据已经成功同步。

mysql> select * from PERSONS;                                                                                                                              
+------+-----------------+                                                                                                                                 
| ID   | NAME            |                                                                                                                                 
+------+-----------------+                                                                                                                                 
|    1 | zhangsan-update |                                                                                                                                 
|    4 | doris           |                                                                                                                                 
|    3 | wangwu          |                                                                                                                                 
+------+-----------------+                                                                                                                                 
3 rows in set (0.01 sec)  

通过以上操作,成功实现将 Oracle 中数据整库同步到 Doris 中,同时也实现了上游全量与增量数据的自动接入。

实际使用反馈


原先将 Oracle 数据同步到 Doris 中时,需要手动创建 Source 和 Sink 表,而使用 Doris-Flink-Connector 后可以实现多表、整库数据一键同步,极大简化了开发流程,该工具还能实现字段类型自动转换,数据同步更加简单便捷。

—— 远景动力 资深大数据工程师 孙全隆

在使用 Doris-Flink-Connector 之前,我们一般是通过 DataX 定时从业务系统中抽取数据,当进行全量同步时,抽取数据会对业务系统造成一定的压力,且该方式只能做到小时级的同步。期间我们也尝试了 FlinkCDC,该方式虽然可以实现数据实时写入 Doris ,但每个表都需要手动创建新任务,配置工作量大且会浪费服务器资源。而 Doris-Flink-Connector 可以实现一键化脚本操作,为我们减少了繁杂的手工配置流程,高效稳定的实现了整库数据快速同步。

—— 郑煤机数耘科技 资深大数据工程师 杨开元

Doris-Flink-Connector  一键操作即可快速实现 Oracle 数据整库同步到 Doris,节省了手动配置以及编写复杂同步代码的步骤,避免了手动同步中可能出现数据不一致的问题。不仅能提高数据的准确性和可靠性,也极大提升了工作的效率。

—— 海程邦达 资深大数据工程师 王新

在实时数仓的建设过程中,对于 ODS 贴源数据层的同步需求,Doris-Flink-Connector  能够很好的解决全量数据、增量数据、增量表、表结构变更自动监听。同时它也对 Stream Load 逻辑进行了优化,可以避免频繁对空数据进行 Load,减轻了数据库压力。此外,Doris-Flink-Connector 能够帮助我们节省大量 Flink 集群资源,特别是业务变更频繁时期,能很好及时的同步上游状态,确保上下游数据的一致性。

——旺小宝 数据架构师 米华军

我们在 MySQL 和 Orcale 两个场景下均进行了全量 + 增量的尝试,Doris-Flink-Connector 是真正的拆箱即用,真正实现了一键式操作、无感知建表,这为开发人员节省了不少时间成本,同时在使用期间遇到问题,SelectDB 技术同学的响应速度非常给力,帮助我们快速推进数据同步工作。

—— 博思软件 资深大数据开发工程师 刘工

总结


Doris-Flink-Connector 通过集成 FlinkCDC,能够将上游 Oracle 数据库中的数据快速同步到 Doris 中。特别是在整库同步场景中,用户只需执行一键导入命令,即可快速将整个数据库的全量和增量数据导入到 Doris 中。这一功能的引入大大降低了数据同步的门槛,使数据同步变得更加简单高效。

最后,欢迎有需要的小伙伴使用该工具,感兴趣的伙伴可以在评论区留言或私信申请进入专项支持群,如果你在使用过程中遇到任何问题,均可向我们反馈~

# 作者介绍: 吴迪, SelectDB 生态研发工程师。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/89969.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

408考研-数据结构算法-顺序表

数组 如何创建数组 我们以 Java 中创建数组为例&#xff0c;创建语法如下 dataType[] arrName new dataType[size];dataType: 也就是我们数组中元素的数据类型arrName:即数组名size:即数组所能容纳的元素数量new: Java 语言中的关键词 假设我们要创建一个由 10 个元素的数…

blender 火焰粒子

效果展示 创建火焰模型 新建立方体&#xff08;shift A &#xff09;,添加表面细分修改器&#xff08;ctrl 2 &#xff09;&#xff0c;视图层级调整为 3 &#xff0c;这样布线更密集&#xff1b; 右键将模型转换为网格&#xff0c;tab 进入编辑模式&#xff0c;7 切换到顶…

五、多表查询-4.1子查询和分类

一、概念 SQL语句中嵌套select语句&#xff0c;成为嵌套查询&#xff0c;又称子查询。 子查询外部的语句 可以是 insert / update / delete / select 的任何一个。 二、子查询分类 1、根据子查询结果不同 标量子查询&#xff08;子查询结果为单个值&#xff09;、列子查询&a…

创建python环境——Anaconda

在Windows中安装Anaconda和简单使用 一.Anaconda发行概述 Anaconda是一个可以便捷获取和管理包&#xff0c;同时对环境进行统一管理的发行版本&#xff0c;它包含了conda、 Python在内的超过180个科学包及其依赖项。 1.Anaconda发行版本具有以下特点&#xff1a; (1)包含了…

1.RabbitMQ介绍

一、MQ是什么&#xff1f;为什么使用它 MQ&#xff08;Message Queue&#xff0c;简称MQ&#xff09;被称为消息队列。 是一种用于在应用程序之间传递消息的通信方式。它是一种异步通信模式&#xff0c;允许不同的应用程序、服务或组件之间通过将消息放入队列中来进行通信。这…

DP读书:不知道干什么就和我一起读书吧

DP读书&#xff1a;不知道干什么就和我一起读书吧 为啥写博客&#xff1a;好处一&#xff1a;记录自己的学习过程优点二&#xff1a;让自己在各大社群里不那么尴尬推荐三&#xff1a;坚持下去&#xff0c;找到一个能支持自己的伙伴 虽然清楚知识需要靠时间沉淀&#xff0c;但在…

Ansible项目实战管理/了解项目环境/项目管理

一&#xff0c;项目环境 1.项目基础 项目过程 调研阶段 设计阶段 开发阶段 测试阶段 运营阶段 2.项目环境 个人开发环境 公司开发环境 项目测试环境 项目预发布环境 灰度环境&#xff1a;本身是生产环境&#xff0c;安装项目规划&#xff0c;最终所有的生产环境都发…

Android JNI系列详解之CMake配置库文件的输出目录

一、前提 阅读上一篇文章Android JNI系列详解之CMake编译工具的使用&#xff0c;里面讲到了需要配置两个文件&#xff1a;CMakeList.txt和build.gradle 二、配置CMake编译工具输出库文件的路径 1.默认的库文件输出路径&#xff1a;app/build/intermediates/cmake/debug/obj 由此…

QtCreator 界面程序 无法输入中文问题

链接: https://pan.baidu.com/s/1cqAI8A 密码: j3jq 下载上面链接里的libfcitxplatforminputcontextplugin.so库&#xff0c; 然后拷贝到Qt的如下3个目录里&#xff0c; /qt/qt5.14.2_soft/Tools/QtCreator/lib/Qt/plugins/platforminputcontexts //需要修改文件权限 /qt/qt…

基于Kohonen网络的聚类算法

1.案例背景 1.1 Kohonen网络 Kohonen网络是自组织竞争型神经网络的一种,该网络为无监督学习网络,能够识别环境特征并自动聚类。Kohonen神经网络是芬兰赫尔辛基大学教授Teuvo Kohonen 提出的,该网络通过自组织特征映射调整网络权值,使神经网络收敛于一种表示形态。在这一形态中…

小程序中如何给会员发送微信服务通知

通过发送微信服务通知&#xff0c;可以及时向会员推送最新的活动、优惠信息等重要通知&#xff0c;从而增加用户参与度和购买意愿。下面就介绍怎么给会员发送微信服务通知的方法和步骤。 1. 找到指定的会员卡。在管理员后台->会员管理处&#xff0c;找到需要接收服务通知的…

非煤矿山风险监测预警算法 yolov8

非煤矿山风险监测预警算法通过yolov8网络模型深度学习算法框架&#xff0c;非煤矿山风险监测预警算法在煤矿关键地点安装摄像机等设备利用智能化视频识别技术&#xff0c;能够实时分析人员出入井口的情况&#xff0c;人数变化并检测作业状态。YOLO的结构非常简单&#xff0c;就…