分析查询语句:使用EXPLAIN命令分析SQL执行计划,找出慢查询的原因,比如是否使用了全表扫描,是否存在索引未被利用的情况等,并根据相应情况对索引进行适当修改。
创建或优化索引:根据查询条件创建合适的索引,特别是经常用于WHERE子句的字段、Orderby 排序的字段、Join 连表查询的字典、 group by的字段,并且如果查询中经常涉及多个字段,考虑创建联合索引,使用联合索引要符合最左匹配原则,不然会索引失效
避免索引失效:比如不要用左模糊匹配、函数计算、表达式计算等等。
查询优化:避免使用SELECT*,只查询真正需要的列;使用覆盖索引,即索引包含所有查询的字段;联表查询最好要以小表驱动大表,并且被驱动表的字段要有索引,当然最好通过兄余字段的设计,避免联表查询。
分页优化:针对 limit n,y 深分页的查询优化,可以把Limit查询转换成某个位置的查询:select*from tb_sku where id>20000 limit 10,该方案适用于主键自增的表
优化数据库表:如果单表的数据超过了千万级别,考虑是否需要将大表拆分为小表,减轻单个表的查询压力。也可以将字段多的表分解成多个表,有些字段使用频率高,有些低,数据量大时,会由于使用频率低的存在而变慢,可以考虑分开。
使用缓存技术:引入缓存层,如Redis,存储热点数据和频繁查询的结果,但是要考虑缓存一致性的问题,对于读请求会选择旁路缓存策略,对于写请求会选择先更新 db,再删除缓存的策略。