MySQL事务原理、MVCC详解

事务原理

1 事务基础

1). 事务

事务 是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系 统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。

2). 特性

  • 原子性(Atomicity):事务是不可分割的最小操作单元,要么全部成功,要么全部失败。

  • 一致性(Consistency):事务完成时,必须使所有的数据都保持一致状态。

  • 隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环 境下运行。

  • 持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。

那实际上,我们研究事务的原理,就是研究MySQL的InnoDB引擎是如何保证事务的这四大特性的。

而对于这四大特性,实际上分为两个部分。 其中的原子性、一致性、持久化,实际上是由InnoDB中的 两份日志来保证的,一份是redo log日志,一份是undo log日志。

而隔离性是通过数据库的, 加上MVCC来保证的。
在这里插入图片描述

我们在讲解事务原理的时候,主要就是来研究一下redolog,undolog以及MVCC。

redo log

​ 重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久性。 该日志文件由两部分组成:

重做日志缓冲(redo log buffer)以及重做日志文件(redo log file),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都存到该日志文件中, 用于在刷新脏页到磁盘,发生错误时, 进行数据恢复使用。

如果没有redolog,可能会存在什么问题的? 我们一起来分析一下。

我们知道,在InnoDB引擎中的内存结构中,主要的内存区域就是缓冲池,在缓冲池中缓存了很多的数据页。

  1. 当我们在一个事务中,执行多个增删改的操作时,InnoDB引擎会先操作缓冲池中的数据,如果缓冲区没有对应的数据,会通过后台线程将磁盘中的数据加载出来,存放在缓冲区中,然后将缓冲池中的数据修改,修改后的数据页我们称为----脏页。

  2. 而脏页则会在一定的时机,通过后台线程刷新到磁盘中,从而保证缓冲区与磁盘的数据一致。

  3. 而缓冲区的脏页数据并不是实时刷新的,而是一段时间之后将缓冲区的数据刷新到磁盘中,假如刷新到磁盘的过程出错了,而提示给用户事务提交成功,而数据却没有持久化下来,这就出现问题了,没有保证事务的持久性。
    在这里插入图片描述
    那么,如何解决上述的问题呢? 在InnoDB中提供了一份日志 redo log,接下来我们再来分析一 下,通过redolog如何解决这个问题。
    在这里插入图片描述

  • 有了redolog之后,当对缓冲区的数据进行增删改之后,会首先将操作的数据页的变化,记录在redo log buffer中。

    • 在事务提交时,会将redo log buffer中的数据刷新到redo log磁盘文件中。
  • 过一段时间之后,如果刷新缓冲区的脏页到磁盘时,发生错误,此时就可以借助于redo log进行数据恢复,这样就保证了事务的持久性。

    • 而如果脏页成功刷新到磁盘 或 或者涉及到的数据已经落盘,此时redolog就没有作用了,就可以删除了,所以存在的两个redolog文件是循环写的。

那为什么每一次提交事务,要刷新redo log 到磁盘中呢,而不是直接将buffer pool中的脏页刷新 到磁盘呢 ?

因为在业务操作中,我们操作数据一般都是随机读写磁盘的,而不是顺序读写磁盘。 而redo log在 往磁盘文件中写入数据,由于是日志文件,所以都是顺序写的。顺序写的效率,要远大于随机写。 这 种先写日志的方式,称之为 WAL(Write-Ahead Logging)。

undo log

回滚日志,用于记录数据被修改前的信息 , 作用包含两个 :

  • 提供回滚(保证事务的原子性)
  • 和 MVCC(多版本并发控制) 。

undo log和redo log记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undo log中会记录一条对应的insert记录,反之亦然,当update一条记录时,它记录一条对应相反的update记录。

当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。

Undo log销毁:undo log在事务执行时产生,事务提交时,并不会立即删除undo log,因为这些 日志可能还用于MVCC

Undo log存储:undo log采用段的方式进行管理和记录,存放在前面介绍的 rollback segment 。回滚段中,内部包含1024个undo log segment。

MVCC

1 基本概念

1). 当前读

​ 读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。

对于我们日常的操作,如:select … lock in share mode(共享锁),select … for update、update、insert、delete(排他锁)都是一种当前读。

测试:
在这里插入图片描述
​ 在测试中我们可以看到,即使是在默认的RR隔离级别下,事务A中依然可以读取到事务B最新提交的内 容,因为在事务A第二次的查询语句后面加上了 lock in share mode 共享锁,此时是当前读(最新版本的数据)操作。当然,当我们 加排他锁的时候,也是当前读操作。

注意:如果没有加锁,就会符合可重复读,2次查询数据一样(读取不到事务B提交的内容)。

2). 快照读

​ 简单的select(不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据, 不加锁,是非阻塞读。

• Read Committed:每次select,都生成一个快照读。

• Repeatable Read:开启事务后第一个select语句才是快照读的地方。

• Serializable:快照读会退化为当前读。

在这里插入图片描述
在测试中,我们看到即使事务B提交了数据,事务A中也查询不到。 原因就是因为普通的select是快照 读,而在当前默认的RR隔离级别下,开启事务后第一个select语句才是快照读的地方,后面执行相同 的select语句都是从快照中获取数据,可能不是当前的最新数据,这样也就保证了可重复读。

3). MVCC

​ 全称 Multi-Version Concurrency Control,多版本并发控制。指维护一个数据的多个版本, 使得读写操作没有冲突快照读为MySQL实现MVCC提供了一个非阻塞读功能。

​ MVCC的具体实现,还需 要依赖于数据库记录中的三个隐式字段、undo log日志、readView。

​ 接下来,我们再来介绍一下InnoDB引擎的表中涉及到的隐藏字段 、undolog 以及 readview,从 而来介绍一下MVCC的原理。

隐藏字段

1 介绍

在这里插入图片描述
当我们创建了上面的这张表,我们在查看表结构的时候,就可以显式的看到这三个字段。 实际上除了 这三个字段以外,InnoDB还会自动的给我们添加三个隐藏字段及其含义分别是:
在这里插入图片描述
而上述的前两个字段是肯定会添加的, 是否添加最后一个字段DB_ROW_ID,得看当前表有没有主键, 如果有主键,则不会添加该隐藏字段。

undolog

1 介绍

​ 回滚日志,在insert、update、delete的时候产生的便于数据回滚的日志。

当insert的时候,产生的undo log日志只在回滚时需要,在事务提交后,可被立即删除。

而update、delete的时候,产生的undo log日志不仅在回滚时需要,在快照读时也需要,不会立即被删除。

2 版本链

有一张表原始数据为:
在这里插入图片描述

DB_TRX_ID : 代表最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID,是自增的。
DB_ROLL_PTR : 由于这条数据是才插入的,没有被更新过,所以该字段值为null。指向上一个版本

然后,有四个并发事务同时在访问这张表。

A. 第一步

在这里插入图片描述
当事务2执行第一条修改语句时,会记录undo log日志,记录数据变更之前的样子;

然后更新记录, 并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。
在这里插入图片描述
在这里插入图片描述
B.第二步
在这里插入图片描述当事务3执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记 录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。
在这里插入图片描述

C. 第三步
在这里插入图片描述
当事务4执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记 录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。
在这里插入图片描述
最终我们发现,不同事务或相同事务对同一条记录进行修改,会导致该记录的undolog生成一条 记录版本链表,链表的头部是最新的旧记录,链表尾部是最早的旧记录。

readview

ReadView(读视图)是 快照读 SQL执行时MVCC提取数据的依据,记录并维护系统当前活跃的事务 (未提交的)id。

ReadView中包含了四个核心字段:

在这里插入图片描述
而在readview中就规定了版本链数据的访问规则:

trx_id 代表当前undolog版本链对应事务ID。

在这里插入图片描述
后面会有案例解释这张图

不同的隔离级别,生成ReadView的时机不同:

  • READ COMMITTED :在事务中每一次执行快照读时生成ReadView。

  • REPEATABLE READ:仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。

原理分析

1 RC隔离级别

RC隔离级别下,在事务中每一次执行快照读时生成ReadView。

我们就来分析事务5中,两次快照读读取数据,是如何获取数据的?

在事务5中,查询了两次id为30的记录,由于隔离级别为Read Committed,所以每一次进行快照读 都会生成一个ReadView,那么两次生成的ReadView如下。

在这里插入图片描述
A. 先来看第一次快照读具体的读取过程:
在这里插入图片描述

  1. m_ids是当前活跃的事务id集合,在当前箭头这行,事务2已经提交,所以当前活跃事务集合是3,4,5
  2. min_trx_id是最小活跃事务 那就是3
  3. max_trx_id是预分配的事务id 就是当前最大事务的id+1
  4. creator_trx_id是ReadView创建者事务id,在当前事务(查询id为30的记录)事务id是5

在进行匹配时(事务5查询id为30的记录),会从undo log的版本链,从上到下进行挨个匹配:

在这里插入图片描述
在这里插入图片描述

RR隔离级别

RR隔离级别下,仅在事务中第一次执行快照读时 生成的ReadView,后续复用该ReadView。 而RR 是可 重复读,在一个事务中,执行两次相同的select语句,查询到的结果是一样的。 那MySQL是如何做到可重复读的呢? 我们简单分析一下就知道了
在这里插入图片描述
我们看到,在RR隔离级别下,只是在事务中第一次快照读时生成ReadView,后续都是复用该ReadView,那么既然ReadView都一样, ReadView的版本链匹配规则也一样, 那么最终快照读返 回的结果也是一样的。

所以呢,MVCC的实现原理就是通过 InnoDB表的隐藏字段、UndoLog 版本链、ReadView来实现的。

MVCC 加 锁,则实现了事务的隔离性。 而一致性则是由redolog 与 undolog保证。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/90698.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

联邦学习FedAvg-基于去中心化数据的深度网络高效通信学习

随着计算机算力的提升,机器学习作为海量数据的分析处理技术,已经广泛服务于人类社会。 然而,机器学习技术的发展过程中面临两大挑战:一是数据安全难以得到保障,隐私泄露问题亟待解决;二是网络安全隔离和行业…

【业务功能篇90】微服务-springcloud-检索服务-ElasticSearch实战运用-DSL语句

商城检索服务 1.检索页面的搭建 商品检索页面我们放在search服务中处理&#xff0c;首页我们需要在mall-search服务中支持Thymeleaf。添加对应的依赖 <!-- 添加Thymeleaf的依赖 --><dependency><groupId>org.springframework.boot</groupId><artifa…

原生微信小程序 动态(横向,纵向)公告(广告)栏

先看一下动态效果 Y轴滚动公告的原理是swiper组件在页面中的Y轴滚动&#xff0c;属性vertical&#xff0c;其余属性也设置一下autoplay circular interval"3000" X轴滚动的原理是&#xff0c;利用动画效果&#xff0c;将内容从右往左过渡过去 wxml&#xff1a; &l…

力扣:73. 矩阵置零(Python3)

题目&#xff1a; 给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚…

【Flutter】下载安装Flutter并使用学习dart语言

前言 安装flutter, 并使用flutter内置的dartSDK学习使用dart语言。 编辑器&#xff1a; Android Studio fluuter 版本 : flutter_windows_3.13.1 内置dartSDK : 3.1.0 dart路径路径&#xff1a; flutter安装路径\bin\cache\dart-sdk 安装Flutter 下载安装包 flutter下载地址…

whisper 语音识别项目部署

1.安装anaconda软件 在如下网盘免费获取软件&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1zOZCQOeiDhx6ebHh5zNasA 提取码&#xff1a;hfnd 2.使用conda命令创建python3.8环境 conda create -n whisper python3.83.进入whisper虚拟环境 conda activate whisper4.…

【Navicat Premium 16】使用Navicat将excel的数据进行单表的导入,详细操作

业务场景&#xff1a;经常与数据打交道嘛&#xff0c;有的时候会需要将excel的数据导入到数据库中&#xff0c;后面发现对于单表的数据导入&#xff0c;使用Navicat还是非常方便的&#xff0c;仅仅需要将字段关系映射好就可以了 一、开始操作 前提条件&#xff1a;已经成功连接…

【FPGA零基础学习之旅#11】数码管动态扫描

&#x1f389;欢迎来到FPGA专栏~数码管动态扫描 ☆* o(≧▽≦)o *☆嗨~我是小夏与酒&#x1f379; ✨博客主页&#xff1a;小夏与酒的博客 &#x1f388;该系列文章专栏&#xff1a;FPGA学习之旅 文章作者技术和水平有限&#xff0c;如果文中出现错误&#xff0c;希望大家能指正…

【OpenCV实战】3.OpenCV颜色空间实战

OpenCV颜色空间实战 〇、Coding实战内容一、imread1.1 函数介绍1.2 Flags1.3 Code 二. 色彩空间2.1 获取单色空间2.2. HSV、YUV、RGB2.3. 不同颜色空间应用场景 〇、Coding实战内容 OpenCV imread()方法不同的flags差异性获取单色通道【R通道、G通道、B通道】HSV、YUV、RGB 一…

JVM ZGC垃圾收集器

ZGC垃圾收集器 ZGC&#xff08;“Z”并非什么专业名词的缩写&#xff0c;这款收集器的名字就叫作Z Garbage Collector&#xff09;是一款在JDK 11中新加入的具有实验性质[1]的低延迟垃圾收集器&#xff0c;是由Oracle公司研发的。 ZGC收集器是一款基于Region内存布局的&#…

微服务学习资料

文章目录 参考资料一. 微服务概述1. CAP理论2. BASE理论3. SpringBoot 与 SpringCloud对比 二. 服务注册&#xff1a;Zookeeper,Eureka,Nacos,Consul1. Nacos两种健康检查方式&#xff1f;2. nacos中负责负载均衡底层是如何实现的3. Nacos原理4. 临时实例和持久化(非临时)实例 …

JVM第二篇 类加载子系统

JVM主要包含两个模块&#xff0c;类加载子系统和执行引擎&#xff0c;本篇博客将类加载子系统做一下梳理总结。 目录 1. 类加载子系统功能 2. 类加载子系统执行过程 2.1 加载 2.2 链接 2.3 初始化 3. 类加载器分类 3.1 引导类加载器 3.2 自定义加载器 3.2.1 自定义加载器实…