whisper 语音识别项目部署

1.安装anaconda软件
在如下网盘免费获取软件:
链接:https://pan.baidu.com/s/1zOZCQOeiDhx6ebHh5zNasA
提取码:hfnd

2.使用conda命令创建python3.8环境

conda create -n whisper python==3.8

3.进入whisper虚拟环境

conda activate whisper

4.安装cuda10.0的PyTorch环境

pip --trusted-host pypi.tuna.tsinghua.edu.cn install torch==1.10.1+cu102 torchvision==0.11.2+cu102 torchaudio==0.10.1 -f https://download.pytorch.org/whl/torch_stable.html

5.使用命令安装whisper库包

pip install -U openai-whisper

6.简单使用命令识别一段语音:

whisper output.wav --model medium  --language Chinese

6.安装和配置ffmpeg软件
在如下网盘免费获取软件:

配置只需要解压后将文件里面的bin路径放入系统环境变量Path中即可
在这里插入图片描述

7.安装cuda软件
cuda11.0软件百度网盘获取:
链接:https://pan.baidu.com/s/1KOJfAVR6nKmVafNnmbsYDw
提取码:lblh
cudnn11.0百度网盘获取:
链接:https://pan.baidu.com/s/1CBuq7jflihEDuclSq-RTJA
提取码:efgu

6.打开pycharm软件编写代码

7.可以实时录音并且语音转中文的代码编写(使用cpu运行)

import whisper
import zhconv
import wave  # 使用wave库可读、写wav类型的音频文件
import pyaudio  # 使用pyaudio库可以进行录音,播放,生成wav文件def record(time):  # 录音程序# 定义数据流块CHUNK = 1024  # 音频帧率(也就是每次读取的数据是多少,默认1024)FORMAT = pyaudio.paInt16  # 采样时生成wav文件正常格式CHANNELS = 1  # 音轨数(每条音轨定义了该条音轨的属性,如音轨的音色、音色库、通道数、输入/输出端口、音量等。可以多个音轨,不唯一)RATE = 16000  # 采样率(即每秒采样多少数据)RECORD_SECONDS = time  # 录音时间WAVE_OUTPUT_FILENAME = "./output.wav"  # 保存音频路径p = pyaudio.PyAudio()  # 创建PyAudio对象stream = p.open(format=FORMAT,  # 采样生成wav文件的正常格式channels=CHANNELS,  # 音轨数rate=RATE,  # 采样率input=True,  # Ture代表这是一条输入流,False代表这不是输入流frames_per_buffer=CHUNK)  # 每个缓冲多少帧print("* recording")  # 开始录音标志frames = []  # 定义frames为一个空列表for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):  # 计算要读多少次,每秒的采样率/每次读多少数据*录音时间=需要读多少次data = stream.read(CHUNK)  # 每次读chunk个数据frames.append(data)  # 将读出的数据保存到列表中print("* done recording")  # 结束录音标志stream.stop_stream()  # 停止输入流stream.close()  # 关闭输入流p.terminate()  # 终止pyaudiowf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')  # 以’wb‘二进制流写的方式打开一个文件wf.setnchannels(CHANNELS)  # 设置音轨数wf.setsampwidth(p.get_sample_size(FORMAT))  # 设置采样点数据的格式,和FOMART保持一致wf.setframerate(RATE)  # 设置采样率与RATE要一致wf.writeframes(b''.join(frames))  # 将声音数据写入文件wf.close()  # 数据流保存完,关闭文件if __name__ == '__main__':model = whisper.load_model("tiny")record(3)  # 定义录音时间,单位/sresult = model.transcribe("output.wav",language='Chinese',fp16 = True)s = result["text"]s1 = zhconv.convert(s, 'zh-cn')print(s1)

8.可以实时录音并且语音转中文的代码编写(使用gpu运行)

import whisper
import zhconv
import wave  # 使用wave库可读、写wav类型的音频文件
import pyaudio  # 使用pyaudio库可以进行录音,播放,生成wav文件
def record(time):  # 录音程序# 定义数据流块CHUNK = 1024  # 音频帧率(也就是每次读取的数据是多少,默认1024)FORMAT = pyaudio.paInt16  # 采样时生成wav文件正常格式CHANNELS = 1  # 音轨数(每条音轨定义了该条音轨的属性,如音轨的音色、音色库、通道数、输入/输出端口、音量等。可以多个音轨,不唯一)RATE = 16000  # 采样率(即每秒采样多少数据)RECORD_SECONDS = time  # 录音时间WAVE_OUTPUT_FILENAME = "./output.wav"  # 保存音频路径p = pyaudio.PyAudio()  # 创建PyAudio对象stream = p.open(format=FORMAT,  # 采样生成wav文件的正常格式channels=CHANNELS,  # 音轨数rate=RATE,  # 采样率input=True,  # Ture代表这是一条输入流,False代表这不是输入流frames_per_buffer=CHUNK)  # 每个缓冲多少帧print("* recording")  # 开始录音标志frames = []  # 定义frames为一个空列表for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):  # 计算要读多少次,每秒的采样率/每次读多少数据*录音时间=需要读多少次data = stream.read(CHUNK)  # 每次读chunk个数据frames.append(data)  # 将读出的数据保存到列表中print("* done recording")  # 结束录音标志stream.stop_stream()  # 停止输入流stream.close()  # 关闭输入流p.terminate()  # 终止pyaudiowf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')  # 以’wb‘二进制流写的方式打开一个文件wf.setnchannels(CHANNELS)  # 设置音轨数wf.setsampwidth(p.get_sample_size(FORMAT))  # 设置采样点数据的格式,和FOMART保持一致wf.setframerate(RATE)  # 设置采样率与RATE要一致wf.writeframes(b''.join(frames))  # 将声音数据写入文件wf.close()  # 数据流保存完,关闭文件if __name__ == '__main__':model = whisper.load_model("base")record(3)  # 定义录音时间,单位/saudio = whisper.load_audio("output.wav")audio = whisper.pad_or_trim(audio)mel = whisper.log_mel_spectrogram(audio).to(model.device)_, probs = model.detect_language(mel)print(f"Detected language: {max(probs, key=probs.get)}")options = whisper.DecodingOptions(language='Chinese',fp16 = True)result = whisper.decode(model, mel, options)s1 = zhconv.convert(result.text, 'zh-cn')print(s1)

9.展示实时翻译结果
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/90689.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Navicat Premium 16】使用Navicat将excel的数据进行单表的导入,详细操作

业务场景:经常与数据打交道嘛,有的时候会需要将excel的数据导入到数据库中,后面发现对于单表的数据导入,使用Navicat还是非常方便的,仅仅需要将字段关系映射好就可以了 一、开始操作 前提条件:已经成功连接…

【FPGA零基础学习之旅#11】数码管动态扫描

🎉欢迎来到FPGA专栏~数码管动态扫描 ☆* o(≧▽≦)o *☆嗨~我是小夏与酒🍹 ✨博客主页:小夏与酒的博客 🎈该系列文章专栏:FPGA学习之旅 文章作者技术和水平有限,如果文中出现错误,希望大家能指正…

【OpenCV实战】3.OpenCV颜色空间实战

OpenCV颜色空间实战 〇、Coding实战内容一、imread1.1 函数介绍1.2 Flags1.3 Code 二. 色彩空间2.1 获取单色空间2.2. HSV、YUV、RGB2.3. 不同颜色空间应用场景 〇、Coding实战内容 OpenCV imread()方法不同的flags差异性获取单色通道【R通道、G通道、B通道】HSV、YUV、RGB 一…

JVM ZGC垃圾收集器

ZGC垃圾收集器 ZGC(“Z”并非什么专业名词的缩写,这款收集器的名字就叫作Z Garbage Collector)是一款在JDK 11中新加入的具有实验性质[1]的低延迟垃圾收集器,是由Oracle公司研发的。 ZGC收集器是一款基于Region内存布局的&#…

微服务学习资料

文章目录 参考资料一. 微服务概述1. CAP理论2. BASE理论3. SpringBoot 与 SpringCloud对比 二. 服务注册:Zookeeper,Eureka,Nacos,Consul1. Nacos两种健康检查方式?2. nacos中负责负载均衡底层是如何实现的3. Nacos原理4. 临时实例和持久化(非临时)实例 …

JVM第二篇 类加载子系统

JVM主要包含两个模块,类加载子系统和执行引擎,本篇博客将类加载子系统做一下梳理总结。 目录 1. 类加载子系统功能 2. 类加载子系统执行过程 2.1 加载 2.2 链接 2.3 初始化 3. 类加载器分类 3.1 引导类加载器 3.2 自定义加载器 3.2.1 自定义加载器实…

YOLOv5:解读general.py

YOLOv5:解读general.py 前言前提条件相关介绍general.pyclip_boxesscale_boxes ★ \bigstar ★xywh2xyxynon_max_suppression ★ ★ ★ \bigstar\bigstar\bigstar ★★★未完待续 参考 前言 记录一下自己阅读general.py代码的一些重要点,方便自己查阅。…

plumelog介绍与应用-一个简单易用的java分布式日志系统

官方文档:http://www.plumelog.com/zh-cn/docs/FASTSTART.html 简介 无代码入侵的分布式日志系统,基于log4j、log4j2、logback搜集日志,设置链路ID,方便查询关联日志基于elasticsearch作为查询引擎高吞吐,查询效率高全…

leetcode316. 去除重复字母(单调栈 - java)

去除重复字母 题目描述单调栈代码演示进阶优化 上期经典 题目描述 难度 - 中等 leetcode316. 去除重复字母 给你一个字符串 s ,请你去除字符串中重复的字母,使得每个字母只出现一次。需保证 返回结果的字典序最小(要求不能打乱其他字符的相对…

无涯教程-分类算法 - 随机森林

随机森林是一种监督学习算法,可用于分类和回归,但是,它主要用于分类问题,众所周知,森林由树木组成,更多树木意味着更坚固的森林。同样,随机森林算法在数据样本上创建决策树,然后从每…

骨传导耳机对人体有危险吗?你知道骨传导耳机都有什么危害吗?

近些年,耳机种类层出不穷,耳塞式、耳夹式、头戴式、骨传导耳机等种类逐渐被大众熟悉,随着骨传导耳机成为耳机市场中的热门品类,骨传导耳机的使用体验也被越来越多的人在意,它的优势相信大家都知道,但是骨传…

dvwa xss通关

反射型XSS通关 low难度 选择难度&#xff1a; 直接用下面JS代码尝试&#xff1a; <script>alert(/xss/)</script>通关成功&#xff1a; medium难度 直接下面代码尝试后失败 <script>alert(/xss/)</script>发现这段代码直接被输出&#xff1a; 尝试…