goroutine的一点东西

前面的两篇,从相对比较简单的锁的内容入手(也是干货满满),开始了go的系列。这篇开始,进入更核心的内容。我们知道,go应该是第一门在语言层面支持协程的编程语言(可能是我孤陋寡闻),goroutine也完全算的上是go的门面。golang围绕着goroutine构建了一整套用户态的调度体系,并不断演进至当前的GMP模型。接下来相当的一段时间,我们应该都会在介绍GMP以及调度机制中度过。

本篇呢,我们就从goroutine开始说起。之所以从goroutine开始说起,是因为从我的角度来说,相比M和P,G是最简单的。G完全就是一个用户态的任务,唯一要做的就是记录任务的状态,并管理任务(或者说被管理)。其中管理任务包括,选择一个ready的任务运行、将阻塞的任务挂在到相应的阻塞队列中、将ready的任务移动到就绪队列。

当然,实际的实现远远比这复杂,但不妨碍我们先忽略一些细节,比如gc相关的内容等,先将主干抽离出来,理解其设计主线。

本文的内容主要是围绕下面的状态图,当然里面的内容不够全面。但就像前面说的,先理解主干,更多的细节在完整介绍完GMP后再进行补充。

对象

g

goroutine本质就是一个任务,可以被运行,可以等待,可以被调度。基于此,首先要有一个结构体,记录任务相关的信息。基本的信息包括任务的内容、任务的状态、运行任务所需的资源等。不只goroutine,包括其他一些计算机领域更广为人知的典型的任务,比如进程、线程等,都是如此。不过不同的任务,基于其自身的特性以及各自的迭代又会有特有的字段。

goroutine对应的对象如下。字段看上去不少,但是刨除一些gc、pprof(观测,不确定都是pprof相关)的字段,其实内容并不多,主要如下图所示。接下来我们一一介绍。

  • 栈相关。
    stack表示goroutine的栈,栈是一块从高向低增长的线性内存,所以用lo和hi两个指针完全可以表示。
type stack struct {lo uintptrhi uintptr
}

stackguard0的作用是为了判断栈的扩张。

goroutine初始化的时候只会分配固定大小的栈,并且初始化的栈一定不会分配太大(2KB)。当goroutine运行过程中分配的栈内存越来越多,栈向下增长超过lo+StackGuard时就需要对栈进行扩张。同时stackguard0还可以设置为stackPreempt,表示该协程需要被抢占。goroutine检查到stackPreempt后会主动调度退出运行。stackguard0被检查的时机就是在发生函数调用时,所以我们说goroutine主动调度的时机除了阻塞时,就是在函数调用时。

stackguard1的作用和stackguard0的作用完全相同,stackguard1用来做c的栈的判断,这块我是完全不懂。

  • _panic和_defer。这是golang的panic和defer特性,其实现是绑定于goroutine的,和我之前想的不一样。后面可以开一篇单独介绍。
  • 调度相关。sched字段在goroutine被调度时记录其状态,主要是sp和pc,这两个字段可以记录goroutine的运行状态。
type gobuf struct {sp   uintptrpc   uintptrg    guintptrctxt unsafe.Pointerret  uintptrlr   uintptrbp   uintptr // for framepointer-enabled architectures
}
  • 其他。其他的字段比如atomicstatus、goid、m等相对比较简单,就不占篇幅在这里说。

g结构体如下。

// src/runtime2.go 407
type g struct {stack       stack   // offset known to runtime/cgostackguard0 uintptr // offset known to liblinkstackguard1 uintptr // offset known to liblink_panic    *_panic // innermost panic - offset known to liblink_defer    *_defer // innermost deferm         *m      // current m; offset known to arm liblinksched     gobufsyscallsp uintptr // if status==Gsyscall, syscallsp = sched.sp to use during gcsyscallpc uintptr // if status==Gsyscall, syscallpc = sched.pc to use during gcstktopsp  uintptr // expected sp at top of stack, to check in tracebackparam        unsafe.Pointeratomicstatus uint32stackLock    uint32 // sigprof/scang lock; TODO: fold in to atomicstatusgoid         int64schedlink    guintptrwaitsince    int64      // approx time when the g become blockedwaitreason   waitReason // if status==Gwaitingpreempt       bool // preemption signal, duplicates stackguard0 = stackpreemptpreemptStop   bool // transition to _Gpreempted on preemption; otherwise, just deschedulepreemptShrink bool // shrink stack at synchronous safe pointasyncSafePoint boolpaniconfault bool // panic (instead of crash) on unexpected fault addressgcscandone   bool // g has scanned stack; protected by _Gscan bit in statusthrowsplit   bool // must not split stackactiveStackChans boolparkingOnChan uint8// 下面都是观测及gc相关的,可以略过raceignore     int8     // ignore race detection eventssysblocktraced bool     // StartTrace has emitted EvGoInSyscall about this goroutinetracking       bool     // whether we're tracking this G for sched latency statisticstrackingSeq    uint8    // used to decide whether to track this GrunnableStamp  int64    // timestamp of when the G last became runnable, only used when trackingrunnableTime   int64    // the amount of time spent runnable, cleared when running, only used when trackingsysexitticks   int64    // cputicks when syscall has returned (for tracing)traceseq       uint64   // trace event sequencertracelastp     puintptr // last P emitted an event for this goroutinelockedm        muintptrsig            uint32writebuf       []bytesigcode0       uintptrsigcode1       uintptrsigpc          uintptrgopc           uintptr         // pc of go statement that created this goroutineancestors      *[]ancestorInfo // ancestor information goroutine(s) that created this goroutine (only used if debug.tracebackancestors)startpc        uintptr         // pc of goroutine functionracectx        uintptrwaiting        *sudog         // sudog structures this g is waiting on (that have a valid elem ptr); in lock ordercgoCtxt        []uintptr      // cgo traceback contextlabels         unsafe.Pointer // profiler labelstimer          *timer         // cached timer for time.SleepselectDone     uint32         // are we participating in a select and did someone win the race?goroutineProfiled goroutineProfileStateHoldergcAssistBytes int64
}

sudog

除了g对象外,goroutine还涉及到sudog的对象。sudog是为了goroutine的阻塞队列而封装的一层对象。sudog的封装在我看来是出于两点考虑:

  • 一个goroutine可以阻塞在多个资源上,也就是可能存在于多个阻塞队列中。针对这种情况,做一层封装会简化并发操作,每个sudog都是独属于某个阻塞队列的。
  • 阻塞队列本身即具有一定的数据结构,封装sudog可以将阻塞队列的结构和g本身隔离出来,相当于某种程度的分层。例如在之前介绍的golang的sync.Mutex实现中,就涉及到红黑树以及链表的结构。

// src/runtime2.go 338
type sudog struct {g *gnext *sudogprev *sudogelem unsafe.Pointer // data element (may point to stack)acquiretime int64releasetime int64ticket      uint32isSelect boolsuccess boolparent   *sudog // semaRoot binary treewaitlink *sudog // g.waiting list or semaRootwaittail *sudog // semaRootc        *hchan // channel
}

g的调度

goroutine的调度通常涉及到三种情况(最基本的三种):

  • goroutine处于running状态,主动调度;
  • goroutine处于running状态,遇到阻塞时间,转换为waiting状态,触发调度;
  • goroutine处于waiting状态,等待条件达成,转换为runnable状态,等待执行;

主动调度

go的runtime包提供了显示调度的方法runtime.Gosched()。
其调用了mcall函数,并将gosched_m函数作为参数传入。

// src/proc.go 316
func Gosched() {checkTimeouts()mcall(gosched_m)
}

先看下mcall函数。mcall是用汇编写的,这里就不贴汇编代码,感兴趣的小伙伴可以自行了解下plan9。从注释里看,mcall做的事情是:

  • 将curg的PC/SP保存至g->sched中。g->sched在第一小节中我们也提到过,是goroutine被调度时记录其状态的字段。其中主要是PC/SP两个字段,PC记录当前goroutine执行到哪条指令,SP记录的是栈顶。
  • 从curg切换至g0。g0是和每个m绑定的,不会执行用户任务,只执行系统任务。通常也把切换至g0称为切换至系统栈。
  • 将curg作为参数传入fn中。fn做的事通常是对curg做一些操作,然后调度至新的goroutine继续执行。实际上,我们上面说的几种调度的情况,只是通过不同的fn参数来实现。
    mcall的这种实现实际也是一种代码复用和抽象的小技巧。

再回到gosched_m函数,实际是调用了goschedImpl函数。
goschedImpl中将curg的状态从_Grunning置为_Grunnable,因为这里是主动的调度,当前goroutine并没有被阻塞。
然后将curg和m进行解绑,并将curg塞到全局的阻塞队列中。
然后调用schedule函数。schedule会寻找到一个可执行的g,并切换至起执行。
流程图如下。

// Gosched continuation on g0.
func gosched_m(gp *g) {if trace.enabled {traceGoSched()}goschedImpl(gp)
}func goschedImpl(gp *g) {status := readgstatus(gp)if status&^_Gscan != _Grunning {dumpgstatus(gp)throw("bad g status")}casgstatus(gp, _Grunning, _Grunnable)dropg()lock(&sched.lock)globrunqput(gp)unlock(&sched.lock)schedule()
}

schedule是很核心的函数,行数也比较多。我们还是忽略一些细节(细节的部分我们在m和p都有一定的了解后再来补充),抽出主干,代码如下。

找到一个可执行的g,然后运行。

// src/proc.go 3185
// One round of scheduler: find a runnable goroutine and execute it.
// Never returns.
func schedule() {_g_ := getg()gp, inheritTime, tryWakeP := findRunnable() // blocks until work is availableexecute(gp, inheritTime)
}

execute会中会做状态的转换,然后运行gogo。gogo的参数是g->sched,gogo同样是汇编实现,其直接设置pc及sp将执行流切换至g。

func execute(gp *g, inheritTime bool) {_g_ := getg()_g_.m.curg = gpgp.m = _g_.mcasgstatus(gp, _Grunnable, _Grunning)gp.waitsince = 0gp.preempt = falsegp.stackguard0 = gp.stack.lo + _StackGuardif !inheritTime {_g_.m.p.ptr().schedtick++}gogo(&gp.sched)
}

goroutine阻塞

当goroutine运行遇到需要等待某些条件时,就会进入等待状态。将当前goroutine挂载到相应的阻塞队列,并触发调度。schedule的内容同上面没有变化,可见schedule是调度的核心,不同的调度方法只是在封装了在不同场景下的细节 。流程图如下。

func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) {if reason != waitReasonSleep {checkTimeouts() // timeouts may expire while two goroutines keep the scheduler busy}mp := acquirem()gp := mp.curgstatus := readgstatus(gp)if status != _Grunning && status != _Gscanrunning {throw("gopark: bad g status")}mp.waitlock = lockmp.waitunlockf = unlockfgp.waitreason = reasonmp.waittraceev = traceEvmp.waittraceskip = traceskipreleasem(mp)// can't do anything that might move the G between Ms here.mcall(park_m)
}
// park continuation on g0.
func park_m(gp *g) {_g_ := getg()if trace.enabled {traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip)}casgstatus(gp, _Grunning, _Gwaiting)dropg()if fn := _g_.m.waitunlockf; fn != nil {ok := fn(gp, _g_.m.waitlock)_g_.m.waitunlockf = nil_g_.m.waitlock = nilif !ok {if trace.enabled {traceGoUnpark(gp, 2)}casgstatus(gp, _Gwaiting, _Grunnable)execute(gp, true) // Schedule it back, never returns.}}schedule()
}

goroutine就绪

goroutine从等待状态转变为就绪状态应该是最简单的,因为其不涉及调度。只是将g的状态改变,并将g从阻塞队列移动至当前的就绪队列。流程图如下。

唯一有点意思的点在于wakep。wakep的作用是 当有新的g就绪,而当前系统的负载又很低时,确保有m和p来及时的运行g。这个后面在m和p的部分回详细介绍。

func goready(gp *g, traceskip int) {systemstack(func() {ready(gp, traceskip, true)})
}
// Mark gp ready to run.
func ready(gp *g, traceskip int, next bool) {if trace.enabled {traceGoUnpark(gp, traceskip)}status := readgstatus(gp)// Mark runnable._g_ := getg()mp := acquirem() // disable preemption because it can be holding p in a local varif status&^_Gscan != _Gwaiting {dumpgstatus(gp)throw("bad g->status in ready")}// status is Gwaiting or Gscanwaiting, make Grunnable and put on runqcasgstatus(gp, _Gwaiting, _Grunnable)runqput(_g_.m.p.ptr(), gp, next)wakep()releasem(mp)
}

本篇呢,对goroutine的介绍肯定不算面面俱到。毕竟,抛开M和P来讲G是很难讲全的。但是,我相信,读过本篇一定会对goroutine建立基本的认知。这种认知不够细节,但一定足够本质。就像文章开头说的,goroutine就是一个用户态的任务。我们自己其实也可以很轻易的实现一个任务管理的系统,这本质上就没有区别。当然,goroutine具备了很多的go的特性,肯定是复杂的多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/91009.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python Qt(八)Treeview

源代码: # -*- coding: utf-8 -*-# Form implementation generated from reading ui file qt_treeview.ui # # Created by: PyQt5 UI code generator 5.15.9 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not…

Jmeter和Postman那个工具更适合做接口测试?

软件测试行业做功能测试和接口测试的人相对比较多。在测试工作中,有高手,自然也会有小白,但有一点我们无法否认,就是每一个高手都是从小白开始的,所以今天我们就来谈谈一大部分人在做的接口测试,小白变高手…

什么是 ORAM

参考文献: [GO96] Goldreich O, Ostrovsky R. Software protection and simulation on oblivious RAMs[J]. Journal of the ACM (JACM), 1996, 43(3): 431-473.[Batcher68] Batcher K E. Sorting networks and their applications[C]//Proceedings of the April 30…

进程间通信之System V 共享内存

文章目录 一、共享内存 进程具有独立性,因此进程间通信的前提是两个进程能看到同一份资源 一、共享内存 在内存中申请一块空间,并将起始地址分别映射到两个进程的虚拟地址空间上,便可以让两个进程看到同一份资源 操作系统为了管理共享内存&…

基于Python+OpenCV智能答题卡识别系统——深度学习和图像识别算法应用(含Python全部工程源码)+训练与测试数据集

目录 前言总体设计系统整体结构图系统流程图 运行环境Python 环境PyCharm安装OpenCV环境 模块实现1. 信息识别2. Excel导出模块3. 图形用户界面模块4. 手写识别模块 系统测试1. 系统识别准确率2. 系统识别应用 工程源代码下载其它资料下载 前言 本项目基于Python和OpenCV图像处…

[maven]关于pom文件中的<relativePath>标签

关于pom文件中的<relativePath>标签 为什么子工程要使用relativePath准确的找到父工程pom.xml.因为本质继承就是pom的继承。父工程pom文件被子工程复用了标签。&#xff08;可以说只要我在父工程定义了标签&#xff0c;子工程就可以没有&#xff0c;因为他继承过来了&…

微信开发之一键踢出群聊的技术实现

简要描述&#xff1a; 删除群成员 请求URL&#xff1a; http://域名地址/deleteChatRoomMember 请求方式&#xff1a; POST 请求头Headers&#xff1a; Content-Type&#xff1a;application/jsonAuthorization&#xff1a;login接口返回 参数&#xff1a; 参数名必选…

MySQL的字符转义

表象 表结构如下: 其中 content 字段存放json之后的数据,这个json数据里面 extra 字段的内容又是一段json,如下: INSERT INTO future.test_escape_character( id, title, content, is_del )VALUES ( 2, 我的博客, {"web_id":31415,"name":"清澄秋…

云计算中的负载均衡技术,确保资源的平衡分配

文章目录 1. 硬件负载均衡器2. 软件负载均衡器3. DNS负载均衡4. 内容分发网络&#xff08;CDN&#xff09; &#x1f388;个人主页&#xff1a;程序员 小侯 &#x1f390;CSDN新晋作者 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 ✨收录专栏&#xff1a;云计算 ✨文章内…

CA证书颁发机构服务器

目录 一、CA证书颁发机构是什么&#xff1f; 二、数字证书可以干什么&#xff1f; 三、PKI&#xff1a;即公钥加密体系&#xff08;public key cryptography&#xff09; 四、CA在网络中的工作流程及原理&#xff08;以网站为例&#xff09; 五、HTTPS 的工作原理 六、CA私有证…

uview ui 1.x ActonSheet项太多,设置滚动(亲测有效)

问题&#xff1a;ActionSheet滚动不了。 使用uview ui &#xff1a;u-action-sheet, 但是item太多&#xff0c;超出屏幕了&#xff0c; 查了一下文档&#xff0c;并没有设置滚动的地方。 官方文档&#xff1a;ActionSheet 操作菜单 | uView - 多平台快速开发的UI框架 - uni-a…