分类模型评估指标——准确率、精准率、召回率、F1、ROC曲线、AUC曲线

机器学习模型需要有量化的评估指标来评估哪些模型的效果更好。

本文将用通俗易懂的方式讲解分类问题的混淆矩阵和各种评估指标的计算公式。将要给大家介绍的评估指标有:准确率、精准率、召回率、F1、ROC曲线、AUC曲线。

机器学习评估指标大全

所有事情都需要评估好坏,尤其是量化的评估指标。

  • 高考成绩用来评估学生的学习能力
  • 杠铃的重量用来评估肌肉的力量
  • 跑分用来评估手机的综合性能

机器学习有很多评估的指标。有了这些指标我们就横向的比较哪些模型的表现更好。我们先从整体上来看看主流的评估指标都有哪些:

分类问题评估指标:

  1. 准确率 – Accuracy
  2. 精确率(差准率)- Precision
  3. 召回率(查全率)- Recall
  4. F1分数
  5. ROC曲线
  6. AUC曲线

回归问题评估指标:

  1. MAE
  2. MSE

分类问题图解

为了方便大家理解各项指标的计算方式,我们用具体的例子将分类问题进行图解,帮助大家快速理解分类中出现的各种情况。

举个例子:

我们有10张照片,5张男性、5张女性。如下图:

 

有一个判断性别的机器学习模型,当我们使用它来判断「是否为男性」时,会出现4种情况。如下图:

 

  1. 实际为男性,且判断为男性(正确)
  2. 实际为男性,但判断为女性(错误)
  3. 实际为女性,且判断为女性(正确)
  4. 实际为女性,但判断为男性(错误)

这4种情况构成了经典的混淆矩阵,如下图:

 

TP – True Positive:实际为男性,且判断为男性(正确)

FN – False Negative:实际为男性,但判断为女性(错误)

TN – True Negative:实际为女性,且判断为女性(正确)

FP – False Positive:实际为女性,但判断为男性(错误)

这4个名词初看起来比较晕(尤其是缩写),但是当我们把英文拆分时就很容易理解了,如下图:

 

所有的评估指标都是围绕上面4种情况来计算的,所以理解上面4种情况是基础!

分类评估指标详解

下面详细介绍一下分类分为种的各种评估指标详情和计算公式:

准确率 – Accuracy

预测正确的结果占总样本的百分比,公式如下:

准确率 =(TP+TN)/(TP+TN+FP+FN)

准确率计算公式

虽然准确率可以判断总的正确率,但是在样本不平衡 的情况下,并不能作为很好的指标来衡量结果。举个简单的例子,比如在一个总样本中,正样本占 90%,负样本占 10%,样本是严重不平衡的。对于这种情况,我们只需要将全部样本预测为正样本即可得到 90% 的高准确率,但实际上我们并没有很用心的分类,只是随便无脑一分而已。这就说明了:由于样本不平衡的问题,导致了得到的高准确率结果含有很大的水分。即如果样本不平衡,准确率就会失效。

精确率(差准率)- Precision

所有被预测为正的样本中实际为正的样本的概率,公式如下:

精准率 =TP/(TP+FP)

精确率计算公式

精准率和准确率看上去有些类似,但是完全不同的两个概念。

精准率代表对正样本结果中的预测准确程度,

准确率则代表整体的预测准确程度,既包括正样本,也包括负样本。

召回率(查全率)- Recall

实际为正的样本中被预测为正样本的概率,其公式如下:

召回率=TP/(TP+FN)

 

召回率的应用场景: 比如拿网贷违约率为例,相对好用户,我们更关心坏用户,不能错放过任何一个坏用户。因为如果我们过多的将坏用户当成好用户,这样后续可能发生的违约金额会远超过好用户偿还的借贷利息金额,造成严重偿失。召回率越高,代表实际坏用户被预测出来的概率越高,它的含义类似:宁可错杀一千,绝不放过一个。

F1分数

如果我们把精确率(Precision)和召回率(Recall)之间的关系用图来表达,就是下面的PR曲线:

PR曲线

可以发现他们俩的关系是「两难全」的关系。为了综合两者的表现,在两者之间找一个平衡点,就出现了一个 F1分数。

F1=(2×Precision×Recall)/(Precision+Recall)

 

ROC曲线、AUC曲线

ROC 和 AUC 是2个更加复杂的评估指标,下面这篇文章已经很详细的解释了,这里直接引用这篇文章的部分内容。

1. 灵敏度,特异度,真正率,假正率

在正式介绍 ROC/AUC 之前,我们还要再介绍两个指标,这两个指标的选择也正是 ROC 和 AUC 可以无视样本不平衡的原因。 这两个指标分别是:灵敏度和(1- 特异度),也叫做真正率(TPR)和假正率(FPR)

灵敏度(Sensitivity) = TP/(TP+FN)

特异度(Specificity) = TN/(FP+TN)

  • 其实我们可以发现灵敏度和召回率是一模一样的,只是名字换了而已。
  • 由于我们比较关心正样本,所以需要查看有多少负样本被错误地预测为正样本,所以使用(1- 特异度),而不是特异度。

真正率(TPR) = 灵敏度 = TP/(TP+FN)

假正率(FPR) = 1- 特异度 = FP/(FP+TN)

下面是真正率和假正率的示意,我们发现TPR 和 FPR 分别是基于实际表现 1 和 0 出发的,也就是说它们分别在实际的正样本和负样本中来观察相关概率问题。 正因为如此,所以无论样本是否平衡,都不会被影响。还是拿之前的例子,总样本中,90% 是正样本,10% 是负样本。我们知道用准确率是有水分的,但是用 TPR 和 FPR 不一样。这里,TPR 只关注 90% 正样本中有多少是被真正覆盖的,而与那 10% 毫无关系,同理,FPR 只关注 10% 负样本中有多少是被错误覆盖的,也与那 90% 毫无关系,所以可以看出:如果我们从实际表现的各个结果角度出发,就可以避免样本不平衡的问题了,这也是为什么选用 TPR 和 FPR 作为 ROC/AUC 的指标的原因。

 

或者我们也可以从另一个角度考虑:条件概率。 我们假设X为预测值,Y为真实值。那么就可以将这些指标按条件概率表示:

精准率 = P(Y=1 | X=1)

召回率 = 灵敏度 = P(X=1 | Y=1)

特异度 = P(X=0 | Y=0)

从上面三个公式看到:如果我们先以实际结果为条件(召回率,特异度),那么就只需考虑一种样本,而先以预测值为条件(精准率),那么我们需要同时考虑正样本和负样本。所以先以实际结果为条件的指标都不受样本不平衡的影响,相反以预测结果为条件的就会受到影响。

2. ROC(接受者操作特征曲线)

ROC(Receiver Operating Characteristic)曲线,又称接受者操作特征曲线。该曲线最早应用于雷达信号检测领域,用于区分信号与噪声。后来人们将其用于评价模型的预测能力,ROC 曲线是基于混淆矩阵得出的。

ROC 曲线中的主要两个指标就是真正率假正率, 上面也解释了这么选择的好处所在。其中横坐标为假正率(FPR),纵坐标为真正率(TPR),下面就是一个标准的 ROC 曲线图。

 

ROC 曲线的阈值问题

与前面的 P-R 曲线类似,ROC 曲线也是通过遍历所有阈值 来绘制整条曲线的。如果我们不断的遍历所有阈值,预测的正样本和负样本是在不断变化的,相应的在 ROC 曲线图中也会沿着曲线滑动。

ROC曲线滑动

如何判断 ROC 曲线的好坏?

改变阈值只是不断地改变预测的正负样本数,即 TPR 和 FPR,但是曲线本身是不会变的。那么如何判断一个模型的 ROC 曲线是好的呢?这个还是要回归到我们的目的:FPR 表示模型虚报的响应程度,而 TPR 表示模型预测响应的覆盖程度。我们所希望的当然是:虚报的越少越好,覆盖的越多越好。所以总结一下就是TPR 越高,同时 FPR 越低(即 ROC 曲线越陡),那么模型的性能就越好。 参考如下:

TPR 越高,同时 FPR 越低(即 ROC 曲线越陡),那么模型的性能就越好

ROC 曲线无视样本不平衡

前面已经对 ROC 曲线为什么可以无视样本不平衡做了解释,下面我们用动态图的形式再次展示一下它是如何工作的。我们发现:无论红蓝色样本比例如何改变,ROC 曲线都没有影响。

ROC 曲线无视样本不平衡

3. AUC(曲线下的面积)

为了计算 ROC 曲线上的点,我们可以使用不同的分类阈值多次评估逻辑回归模型,但这样做效率非常低。幸运的是,有一种基于排序的高效算法可以为我们提供此类信息,这种算法称为曲线下面积(Area Under Curve)

比较有意思的是,如果我们连接对角线,它的面积正好是 0.5。对角线的实际含义是:随机判断响应与不响应,正负样本覆盖率应该都是 50%,表示随机效果。 ROC 曲线越陡越好,所以理想值就是 1,一个正方形,而最差的随机判断都有 0.5,所以一般 AUC 的值是介于 0.5 到 1 之间的。

AUC 的一般判断标准

0.5 – 0.7: 效果较低,但用于预测股票已经很不错了

0.7 – 0.85: 效果一般

0.85 – 0.95: 效果很好

0.95 – 1: 效果非常好,但一般不太可能

AUC 的物理意义

曲线下面积对所有可能的分类阈值的效果进行综合衡量。曲线下面积的一种解读方式是看作模型将某个随机正类别样本排列在某个随机负类别样本之上的概率。以下面的样本为例,逻辑回归预测从左到右以升序排列:

AUC 的物理意义

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/91431.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人生的回忆

回忆是人类宝贵的精神财富,它们像一串串珍珠,串联起我们生活中的每一个片段。 回忆是时间的见证者,它们承载着我们成长、经历、悲欢离合的点点滴滴。 回忆让我们重温过去的欢笑与眼泪,感受那些已经逝去的时光。它们就像一本翻开的…

深入浅出:手把手教你实现顺序表

一、什么是顺序表 顺序表是一种数据结构,或者说,是数据在内存中存储和管理的一种方式。顺序表要求每个数据要从第一个位置开始,依次挨着放。这就很适合使用C语言中的数组来实现。 很多朋友可能会觉得,那有啥可以讲的?我…

R3LIVE项目实战(4) — 双目相机与激光雷达livox_camera_lidar_calibration联合标定

目录 步骤1: 环境配置 1.1 安装环境和驱动 1.2 安装依赖 1.3 下载源码,编译准备 1.4 程序节点概括 步骤2: 相机内参标定 2.1 前期准备 2.3 cameraCalib标定 2.4 内参结果 步骤3: 标定准备和数据采集 3.1 标定场景准备 3.2 连接雷达 3.3 连接相机 3.4 采…

基于全新电脑环境安装pytorch的GPU版本

前言: 距离第一次安装深度学习的GPU环境已经过去了4年多(当时TensorFlow特别麻烦),现在发现安装pytorch的GPU版本还是很简单方便的,流程记录如下。 安装步骤: 步骤一:官网下载Anaconda Free…

Threejs里执行对象的多个动画

承接上文,本文讲述如何在Threejs里播放对象的多个动画,这也是研究了很久才解决的… 一 导出模型 在Blender里按照File->Export,选择glTF2.0 然后在弹框的右上角选择导出为glTF Embedded (.gltf) 这样就把模型导出来了,该模…

docker部署nginx,部署springboot项目,并实现访问

一、先部署springboot项目 1、安装docker: yum install docker -y 2、启动docker: service docker start 重启: service docker restart 3、查看版本: docker -v 4、使设置docker.service生效(路径:…

qt第二天

#include "widget.h" #include "ui_widget.h" #include "QDebug" Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);this->resize(QSize(800,600)); //使用匿名对象,调用重…

HarmonyOS开发:超详细了解项目的工程结构

前言 系列文章目录: HarmonyOS开发第一步,熟知开发工具DevEco Studio 当我们熟练的掌握了DevEco Studio之后,就可以创建项目进行练习了,和市场上大多数IDE一样,DevEco Studio也给我们提供了很多的实例模板&#xff0c…

ElasticSearch-集成ik分词器

本文已收录于专栏 《中间件合集》 目录 背景介绍版本选择优势说明集成过程1.下载安装包2.解压安装包3.重启ElasticSearch服务3.1通过ps -ef | grep elastic查看正在启动的es进程号3.2使用kill -9 xxx 杀死进程3.3使用 ./elasticsearch 启动es服务 分词测试细粒度分词方式分词请…

【面试题】UDP和TCP有啥区别?

UDP UDP协议全称是用户数据报协议,在网络中它与TCP协议一样用于处理数据包,是一种无连接的协议。在OSI模型中,在第四层——传输层,处于IP协议的上一层。UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点,也就…

基于stm32的烟雾浓度检测报警proteus仿真设计(仿真+程序+讲解)

基于STM32的烟雾浓度检测报警仿真设计(仿真程序讲解) 1.主要功能2.仿真3. 程序4. 资料清单&下载链接 基于STM32的烟雾浓度检测报警仿真设计(仿真程序讲解) 仿真图proteus 8.9 程序编译器:keil 5 编程语言:C语言 设计编号&a…

使用TPDSS连接GaussDB数据库

TPDSS是GaussDB官方提供的数据库连接工具,可以在TPDSS查看GaussDB的建库建表语句,于GaussDB使用兼容性比较好,由于TPDSS查找比较麻烦,下面给出了下载链接地址: 链接:https://pan.baidu.com/s/1Lqcu3KriE47…