python-数据分析-numpy、pandas、matplotlib的常用方法

一、numpy

import numpy as np

1.numpy 数组 和 list 的区别

输出方式不同
在这里插入图片描述

里面包含的元素类型
在这里插入图片描述

2.构造并访问二维数组

使用 索引/切片 访问ndarray元素

切片 左闭右开

np.array(list)

在这里插入图片描述

3.快捷构造高维数组

  • np.arange()

  • np.random.randn() - - - 服从标准正态分布- - - 数学期望 μ - - - 标准方差 s
    在这里插入图片描述
    使用matplotlib.pyplot模块验证标准正态分布
    在这里插入图片描述

  • np.random.randint(起始数,终止数(行,列))

4.改变数组的形状 几行几列 reshape

在这里插入图片描述

二、pandas

数据分析 - - - 数据清洗 - - - 控制过滤 - - - 异常值捕获

map分组 聚合

import numpy as np
import pandas as pd

pandas善于处理二维数据

1.数据结构 Series 和 DataFrame

Series

series类似于通过numpy产生的一维数据,但series包含索引(可以自己定)
在这里插入图片描述

在这里插入图片描述

DataFrame

DataFrame是一种二维表格数据结构

创建方法:

  1. 通过列表创建

    行索引是index,列索引是columns

    在这里插入图片描述

    先创建一个空的DataFrame,通过列表生成DataFrame

    在这里插入图片描述

  2. 通过字典创建

    在这里插入图片描述
    简单创建
    在这里插入图片描述
    将字典键变成行索引 - - - from_dict - - - orient(朝向)或者使用 T
    在这里插入图片描述

    data = {'a':[1,3,5],'b':[2,4,6]}
    pd.DataFrame(data = data)pd.DataFrame.from_dict(data,orient='index')
    

    在这里插入图片描述

  3. 通过二维数组创建

    在这里插入图片描述

    np.arange(12)	# array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
    

2.修改索引

set_index 把常规行变成索引列

不会修改原始数据,若希望修改,使用 inplace=True

data.set_index(‘index’, inplace=True)

在这里插入图片描述

修改列名称 rename

修改列名称,使用columns - - - 行 index
使用字典来表达映射关系 - - - {原始数据:新数据}
在这里插入图片描述

将行索引变成常规列 reset_index()

若想修改原始数据 使用reset_index(replace=True)
在这里插入图片描述

3.Excel或csv数据的读取和写入

pd.read_excel(file_name, sheet_name=0, index_col=0)
从左到右,第一个sheet索引是0,该函数返回该页内容 - - - 会将第一行变为列索引 - - - 行索引从0开始
index_col=0 :将第一列变成行索引
header=0:将第一行变成列索引 - - - header=[0,1] 将前两行变成列索引

xxx.to_excel(file_name):将数据写到新的Excel文件

pd.read_csv(file_name, sep=','):读取csv文件,sep默认逗号分隔
index_col - - - header
xxx.to_csv(file_name)

4.pandas数据的读取和筛选

df = pd.DataFrame(data=[[1,2,3],[4,5,6],[7,8,9]],index=['r1','r2','r3'],columns=['c1','c2','c3'])

在这里插入图片描述

  • 读取 列 xxx[‘xxx’]
    在这里插入图片描述
  • 读取 行 xx.loc[‘xxx’]

在这里插入图片描述

  • df.head()
    默认查看前5行,出入几查看几行

  • 查看特殊的数据 按照特定条件筛选

    在这里插入图片描述

5.数据整体情况查看

  • df.shape - - - 查看数据有几行几列
  • df.describe() - - - 查看一些统计指标 – 每一列的个数 均值 标准方差 最小值 最大值
  • df.info() - - - 查看表格数据的信息 - - - 每一列的个数 是否有空值 每一列的类型

在这里插入图片描述

  • df.value_counts() - - - df.loc[‘r2’].value_counts()
    查看某行或某列有哪些数据,以及这些次数出现的频次
    在这里插入图片描述

6.数据运算

  • 从已有的列,通过数据运算创造一个新的列
    在这里插入图片描述
  • sum 求和 mean 均值 axis=0 is 列(默认) axis=1 is 行
    求列方向的聚合值

7.数据映射 map()

map()根据列对数据进行映射

map是一个循环遍历的过程

people = pd.DataFrame(data={'身高':np.random.randint(130,180,10),'age':np.random.randint(18,23,10)
})

在这里插入图片描述
在这里插入图片描述

def map_high(x):if x >= 170:return '高'else:return '低'people['高/低'] = people['身高'].map(map_high)

在这里插入图片描述

在这里插入图片描述

8.空值的填充和查找

NaN空值·

写入空值

在这里插入图片描述

填充空值 fillna()

表格数据如果显示NaN,表示此处为空值fillna()函数,可以填充空值
inplace=True表示写入到数据内存

people.fillna(value=0, inplace=True)

将空值NaN使用value替换

在这里插入图片描述

查找空值 isnull()

是NaN,返回True - - - True is 1
不是返回False - - - False is 0

在这里插入图片描述
xxx.isnull().sum() 对布尔值进行列方向的求和 - - - - 求出每一列空值的个数

三、matplotlib

import numpy as np
import pandas as pdimport matplotlib.pyplot as plt
%matplotlib inline

1.折线图 plt.plot()

在这里插入图片描述

color 线的颜色
linewidth 线的宽度 像素
linestyle 线的风格

在这里插入图片描述
dashed 虚线 dashdot 虚线和点 dotted 点

在这里插入图片描述
在这里插入图片描述

# 可以省略,但建议写上,强制将前面的绘图代码渲染出来
plt.show()
x = [1,2,3]
y = [2,4,6]
plt.plot(x,y)a = [1,3,5]
b = [1,2,3]
plt.plot(a,b)
# 可以省略,但建议写上,强制将前面的绘图代码渲染出来
plt.show()

在这里插入图片描述

2.柱状图 plt.bar()

条形图的横轴可以是字符串,起标识作用

x = ['A','B','C','D']
y = [13,17,15,14]
# plt.bar(x,y, color=['red','blue'])
plt.bar(x,y,color=np.random.random((4,3)))

在这里插入图片描述

3.散点图 plt.scatter()

回归问题

# 横轴数据
x = [1.3, 4,5.8,7.4]
# 纵轴数据
y = [20,30,40,50]
# 大小  也可以表达第三维数据
size = np.array([1,4,9,16])
plt.scatter(x,y,s=size*10,c=(1,2,3,4))

在这里插入图片描述

四、pandas 自带的绘图函数

DataFrame

# 从10到100随机生成一个数据
np.random.randint(10,100)   # 74
# 10行3列
np.random.randint(10,100,size=(10,3))

在这里插入图片描述

df = pd.DataFrame(data=np.random.randint(10,100, size=(10,3)),columns=['A','B','C'])
df.plot(kind='bar')

kind默认是line
hist 直方图 - - - pie 饼图 - - - box 箱体图 - - - area 面积图
在这里插入图片描述
在这里插入图片描述
T转置操作
在这里插入图片描述
Series

df = pd.Series(data=np.random.randint(1,10,size=5),index=['A','B','C','D','E'])
df.plot(kind='bar',color='red')

在这里插入图片描述

1.添加文字说明 标题 坐标轴

np.random.random(3)
# array([0.62461037, 0.88015921, 0.78706271])
# 从0到2π拆分成100个数,等差数列
x = np.linspace(0,2*np.pi, num=100)
y = np.sin(x)
# label 是图例要展示的内容
plt.plot(x,y,color=np.random.random(3),label='line of sin',linestyle='--')
# 允许展示图例 loc参数可选
plt.legend(loc='lower right')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Y=sinX')

在这里插入图片描述

plt.plot(x,np.sin(x),label='sin')
plt.plot(x,np.cos(x),label='cos')
plt.legend(loc='upper right')

在这里插入图片描述

2.label中文报错解决方法

使用matplotlib画图,默认不支持中文显示

plt.rcParams		# 可以查看一些默认属性
plt.rcParams['font.sans-serif']='SimHei'	# 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False	# 解决符号'-'显示为方框的问题plt.plot(x,np.sin(x),label='正弦函数')
plt.plot(x,np.cos(x),label='余弦函数')
plt.legend(loc='upper right')
plt.title('函数')

在这里插入图片描述

五、绘制多个图表 subplot()

三个参数

plt.subplot(221) 两行两列第一个

# 调整图表大小
plt.figure(figsize=(12,8))ax1 = plt.subplot(221)
ax1.plot(x,np.sin(x))ax2 = plt.subplot(222)
ax2.plot(x,np.cos(x))ax3 = plt.subplot(223)
ax3.bar(['a','b','c'],[1,2,3])ax4 = plt.subplot(224)
# ax4.pie(sizes=[30,40,30],labels=['A','B','C'],colors=['red','blue','yellow'])
ax4.pie(np.array([10, 20, 30, 40]))plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/92085.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

supervisorctl(-jar)启动配置设置NACOS不同命名空间

背景 由于需要在上海服务器上面配置B测试环境,原本上面已有A测试环境,固需要将两套权限系统分开 可以使用不同的命名空间来隔离启动服务 注:本文章均不涉及公司机密 1、新建命名空间 命名空间默认会有一个public,并且不能删除&a…

b站手机缓存文件转MP4

b站缓存的文件 音频、视频、弹幕是分开的 这里我只用到了音频和视频所以只介绍这一部分 b站的缓存视频文件和路径结构如下 默认缓存路径 内部存储\Android\data\tv.danmaku.bilil\download\89720189 文件夹结构 文件夹 c_738583 这是单个视频的缓存文件夹 进入c_738583文件夹…

Win11搭建 Elasticsearch 7 集群(一)

一: ES与JDK版本匹配一览表 elasticsearch从7.0开始默认安装了java运行环境,以便在没有安装java运行环境的机器上运行。如果配置了环境变量JAVA_HOME,则elasticsearh启动时会使用JAVA_HOME作为java路径,否则使用elasticsearch根目…

Unity3d C#实现调取网络时间限制程序的体验时长的功能

前言 如题的需求应该经常在开发被提到,例如给客户体验3–5天的程序,到期后使其不可使用,或者几年的使用期限。这个功能常常需要使用到usb加密狗来限制,当然这也的话就需要一定的硬件投入。很多临时提供的版本基本是要求软件来实现…

Databricks 入门之sql(二)常用函数

1.类型转换函数 使用CAST函数转换数据类型(可以起别名) SELECTrating,CAST(timeRecorded as timestamp) FROMmovieRatings; 支持的数据类型有: BIGINT、BINARY、BOOLEAN、DATE 、DECIMAL(p,s)、 DOUBLE、 FLOAT、 INT、 INTERVAL interva…

钡铼R40边缘计算网关与华为云合作,促进物联网传感器数据共享与应用

场景说明 微型气象是不可预测的,基本上不能通过人工手段来分析其变化,因此必须运用新技术,对气象进行实时监测,以便采取相应的措施来避免或解决事故的发生。而常规气象环境数据采集容易造成数据损失、人力成本高、数据安全性差、…

PPPoE连接无法建立的排查和修复

嗨,亲爱的读者朋友们!你是否曾经遇到过PPPoE连接无法建立的问题?今天我将为你详细解析排查和修复这个问题的步骤。 检查物理连接 首先,我们需要确保物理连接没有问题。请按照以下步骤进行检查: - 检查网线是否插好&…

MATLAB中circshift函数转化为C语言

背景 有项目算法使用matlab中circshift函数进行运算,这里需要将转化为C语言,从而模拟算法运行,将算法移植到qt。 MATLAB中circshift简单介绍 circshift是循环移位函数。可以使用于数组和矩阵元素的循环移位。 当A是数组 Bcircshift(A,p);如果…

【Sword系列】Vulnhub靶机HACKADEMIC: RTB1 writeup

靶机介绍 官方下载地址:https://www.vulnhub.com/entry/hackademic-rtb1,17/ 需要读取靶机的root目录下key.txt 运行环境: 虚拟机网络设置的是NAT模式 靶机:IP地址:192.168.233.131 攻击机:kali linux,IP地…

unity界面上Global 与Local xyz- right up forward

gloabal 如果要沿这个方向移动就比较困难 local下就不一样了

Python 分析HTTP的可靠性

在这篇文章中,我们将介绍如何使用 Python 来分析代理服务提供商的可靠性。代理服务在许多场景中都非常有用,例如突破地理限制、保护隐私和提高网络安全性。然而,并非所有的代理服务提供商都是可靠的。因此,我们将使用 Python 来测…

ubuntu20.04+ROS noetic在线运行单USB双目ORB_SLAM

双目摄像头主要有以下几种,各有优缺点。 1.单USB插口,左右图像单独输出2.双USB插口,左右图像单独输出(可能存在同步性问题)3.双USB插口,左右图像合成输出4.单USB插口,左右图像合成输出 官方版…