langchain介绍之-Prompt

  LangChain 是一个基于语言模型开发应用程序的框架。它使得应用程序具备以下特点:1.数据感知:将语言模型与其他数据源连接起来。2.代理性:允许语言模型与其环境进行交互
LangChain 的主要价值在于:组件:用于处理语言模型的抽象,以及每个抽象的多个实现集合。这些组件是模块化且易于使用的,无论您是否在使用 LangChain 框架的其他部分
现成的链式结构:由多个组件组成的结构化组合,用于完成特定的高级任务现成的链式结构使得入门变得轻松。对于更复杂的应用程序和微妙的用例,组件使得可以轻松定制现有链式结构或构建新的结构。此篇博客主要介绍Langchain的prompt相关内容。

  Langchain中提供了哪些Prompt呢?具体如下图所示,是截至目前Langchain提供的所有模版,对于base类模版,在通过langchain构建应用时,一般很少用到,开发者主要用的还是ChatPromptTemplate,PromptTemplate,以及各类MessagePromptTemplate。

  为什么Lanchain会提供不同类型的MessagePromptTemplate呢?因为Openai的原始接口中,对于chat completion这个接口,里面的user role就分为user,system,assistant三个角色,所以,这里的MessageTemplate也分为HumanMessagePromptTemplate,AIMessagePromptTemplate,SystemMessagePromptTemplate。

  openai官方提供的chat completion的接口如下图所示,可以看到原始调用openai的接口中,需要传入role的信息,所以上面的三种messagePromptTemplate对应三种不同的角色。

了解了前面的基础知识后,来看看如何使用PromptTemplate。下面的代码中调用from_template

(...)传入了一份带变量的字符串,调用format信息后,打印出来的message就是将变量值于原有字符串merge后的值。另外,从结果也可以看到,PromptTemplate是一个报刊input_variables和template变量的的class。

import openai
import os
from langchain.prompts import (PromptTemplate)prompt_template = PromptTemplate.from_template("Tell me a joke about {context}")
message = prompt_template.format(context="chidren")
print(prompt_template)
print(type(prompt_template))
print(message)

除了通过from_template()的方法初始化一个PromptTemplate的class外,还可以通过下面的方法初始化这个class

prompt_template_two = PromptTemplate(input_variables=['name'],template="what is your {name}"
)
print(prompt_template_two)

  接着来看看SystemMessagePromptTemplate的使用,在创建好一个PromptTemplate后,可以将prompt赋值给SystemMessagePromptTemplate。可以看到SystemMessagePromptTemplate除了prompt变量外,还有template_format,validate_template变量。

prompt = PromptTemplate(template="You are a helpful assistant that translates {input_language} to {output_language}.",input_variables=["input_language", "output_language"],
)
system_message_prompt = SystemMessagePromptTemplate(prompt=prompt)
print(system_message_prompt)
print(type(system_message_prompt))

  除了上面的方式初始化一个SystemMessageTemplate外,还可以通过调用from_template的方式进行初始化。可以看到初始化出来的对象是一样的。

prompt_string = """Translate the text \
that is delimited by triple backticks \
into a style that is {style}. \
text: ```{text}```
"""
system_message_prompt_two = SystemMessagePromptTemplate.from_template(prompt_string)
print(system_message_prompt_two)

接下来再看看ChatPromptTemplate,这里先创建了一个HumanMessagePromptTemplate,然后通过from_message,将创建了promptTemplate赋值给了ChatPromptTemplate

human_prompt_template = HumanMessagePromptTemplate.from_template(prompt_string)
print(human_prompt_template)
print('-------------------')
chat_prompt = ChatPromptTemplate.from_messages([human_prompt_template])
print(chat_prompt)

执行结果如下图所示,可以看到直接打印的话,HumanMessagePromptTemplate和前面的SystemMessagePromptTemplate无区别,class包含的字段都一样。组装出来的ChatPromptTemplate包含input_variables,output_parser,messages三个变量,messages的值就是生成的HumanMessagePromptTemplate.

  调用ChatPromptTemplate的format_messages()方法,可以将变量值和原有的prompt中的文字进行合并。结果如下图所示,返回的message是一个List,List只有一个值就是HumanMessage对象,HumanMessage对象又包含content,additional_kwargs={},example变量。

message = chat_prompt.format_messages(style="myStyle", text="mytext")
print(message)

  可以看到不同promptTemplate之间有一点绕,这可能也和AI技术不断在更新,langchain也在不断迭代有关吧。

  message对象生成好后,就可以调用model生成内容了,代码如下所示:

chat = ChatOpenAI(model_name="gpt-3.5-turbo", verbose=True)
response = chat(message)
print(response)
print(response.content)

  调用大模型生成的内容如下图所示:

  以上就是对Langchain中Prompt的使用介绍。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/92333.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL高阶查询语句

目录 一、常用查询 1、按关键字排序 1.1 升序排序 1.2 降序排序 1.3 结合where进项条件过滤再排序 1.4 多条件排序 2、区间判断及查询不重复记录 2.1 and/or(且/或) 2.2 嵌套 /多条件 2.3 distinct 查询不重复记录 3、对结果进行分组 4、限…

VM装MACos

准备工具: 下载macOS Ventura 13 ISO镜像文件、VMware Workstation Pro最新版并激活(自行官网下载即可,需要镜像和key可以最下边的云盘自取) 下载Unlocker for VMware Workstation Pro,该工具用于解锁 macOS 系统支持、目前已支持macOS 13。 有需要的部分工具我放到最后 …

JavaScript Web APIs - 06 正则表达式

Web APIs - 06 文章目录 Web APIs - 06正则表达式正则基本使用元字符边界符量词范围字符类 替换和修饰符正则插件change 事件判断是否有类 目标:能够利用正则表达式完成小兔鲜注册页面的表单验证,具备常见的表单验证能力 正则表达式综合案例阶段案例 正…

python 笔记(2)——文件、异常、面向对象、装饰器、json

目录 1、文件操作 1-1)打开文件的两种方式: 1-2)文件操作的简单示例: write方法: read方法: readline方法: readlines方法: 2、异常处理 2-1)不会中断程序的异常捕获和处理…

Java实现根据商品ID获取京东商品详情数据,1688商品详情接口,1688API接口封装方法

要通过京东的API获取商品详情数据,您可以使用京东开放平台提供的接口来实现。以下是一种使用Java编程语言实现的示例,展示如何通过京东开放平台API获取商品详情: 首先,确保您已注册成为京东开放平台的开发者,并创建一…

【枚举区间】CF Edu10 C

Problem - C - Codeforces 题意: 思路: 应该反思一下这么典的思路为什么会想不到 枚举区间,一个很经典的套路是,枚举 l,对 r 计数 对于一个l,r取这么多限制中离 l 最近的那个 Code: #inclu…

基于Laravel通用型内容建站企业官网系统源码 可免费商用

是一个基于 Laravel 企业内容建站系统。模块市场拥有丰富的功能应用,支持后台一键快速安装,让开发者能快的实现业务功能开发。 系统完全开源,免费且不限制商业使用 2023年08月23日增加了以下12个特性: [新功能] 手机端Banner支持…

指针:程序员的望远镜

指针 1. 前言2. 指针概述2.1 内存与地址2.2 取地址2.3 指针是什么?2.4 解引用(间接访问)2.5 指针的大小 3. 指针类型的作用3.1 指针-整数3.2 指针的解引用 4. 野指针4.1 野指针成因4.2 如何规避野指针 5. 指针运算5.1 指针-整数5.2 指针-指针…

做CRM客户管理系统前要分析哪些数据?

01 做CRM客户管理系统前要分析哪些数据? “数据是21世纪的石油” 进行数据分析是做crm至关重要的步骤,根据我们团队的多年经验,本文总结出了两个需要重点考虑的方面: 1、客户基本信息 包括客户的基本档案、经营状况、客户特征…

QT使用QImage做图片切割

#include "mainwindow.h" #include "ui_mainwindow.h" #include <QFileDialog> #include <QDebug>MainWindow::MainWindow(QWidget *parent) :QMainWindow(parent),ui(new Ui::MainWindow) {ui->setupUi(this);// 选择本地图片文件QString …

Middleware ❀ Kafka功能与使用详解

文章目录 1. 概述1.1. 消息队列1.2. 应用场景1.3. 工作模式1.4. 基础结构1.4.1. 结构组件1.4.2. 数据同步1.4.3. ACK机制1.4.4. 分区机制1.4.4.1. 使用Partition Key写入1.4.4.2. 轮询写入 - 默认规则1.4.4.3. 指定Partition写入 1.4.5. Offset偏移量1.4.5.1. 消息顺序性1.4.5.…

说说你了解的 CDC

分析&回答 什么是 CDC CDC,Change Data Capture,变更数据获取的简称&#xff0c;使用CDC我们可以从数据库中获取已提交的更改并将这些更改发送到下游&#xff0c;供下游使用。这些变更可以包括INSERT,DELETE,UPDATE等。用户可以在以下的场景下使用CDC&#xff1a; 使用f…