DBO优化SVM的电力负荷预测,附MATLAB代码

今天为大家带来一期基于DBO-SVM的电力负荷预测。

原理详解

文章对支持向量机(SVM)的两个参数进行优化,分别是:惩罚系数c和 gamma。

其中,惩罚系数c表示对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。c越小,容易欠拟合。c过大或过小,泛化能力都会变差。

gamma是选择RBF函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布,gamma越大,支持向量越少,gamma值越小,支持向量越多。支持向量的个数影响训练与预测的速度。

本文所选SVM是从官网下载的libsvm-3.3版本,作者已编译好,大家可以直接运行。如果想自行编译的童鞋可以从网站下载:https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html,编译步骤可以参考https://blog.csdn.net/qq_42457960/article/details/109275227

采用蜣螂优化SVM,参数设置范围分别是:

惩罚系数c[0.001, 1000]
gamma[2^-8,2^8]

将DBO种群数设置为:30,迭代次数设置为60。


数据准备

对电力负荷数据进行处理

本次数据包含负荷值,温度,湿度,风速,压强,降水量,能见度,水汽压和体感温度,部分数据截图如下:

5affd61c38e621decacd7fcea627a74b.png

选取1200个样本作为训练集,每个样本组成为:当天24个小时的全部数据,因此训练集的输入数据大小为1200*216,其中216=24*9,24代表24个小时,9代表9个特征。训练集的输出数据大小为:1200*1。1代表未来一小时的负荷值。

选取100个样本作为测试集,同理,测试集的输入数据大小为100*216,训练集的输出数据大小为:100*1。

结果展示

采用SVM对电力负荷数据进行训练和预测

SVM的预测结果如下:

26f6f468638d19bb5239e0bec261aa1a.png

可以看到,未优化的SVM预测效果还是不错的,但是仍然有改进空间。

DBO-SVM模型的预测效果如下:

5f6c35fdba021a081e87fa2b2a42887d.png

误差对比图如下:

21211ac8f2f5f88ea6888641fee155e0.png

DBO-SVM的进化曲线:

094a53e040c9799867e6d329e84d3f55.png

可以看到DBO-SVM预测效果有了明显提升,DBO-SVM的MSE误差为0.79022,相比于未优化SVM的17.2023有了很大提升!

DBO-SVM的回归拟合图:

9c3ae215e432dfd11851f115cd7467b1.png

误差直方图:

b00571746436990a42e6705d3b7985a7.png

4cf0c992edb5e92a79e8f7d3cd2ee489.png

750a1d28232a8c15f4ca057d253c1368.png

部分代码

%% 初始化DBO参数
pop=30;   %初始种群规模
maxgen=60;   %最大进化代数
lb = [10^-3, 2^-8];
ub = [10^3, 2^8];
dim = 2;
[fMin,bestX,Convergence_curve ] = DBOforSVM(pop, maxgen,lb,ub,dim,inputn,output_train,inputn_test,output_test);
bestc=bestX(1);
bestg=bestX(2);
disp(['最佳参数为:',num2str(bestX)])
cmd = [' -t 2',' -c ',num2str(bestc),' -g ',num2str(bestg),' -s 3 -h 0 -q'];
mode1= libsvmtrain(output_train,inputn,cmd);
[test_simu1,~,~]= libsvmpredict(output_test,inputn_test,mode1);
mse1=mse(output_test,test_simu1); 
error1 = output_test - test_simu1;%% 绘制进化曲线
figure
plot(Convergence_curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('DBO-SVM的MSE进化曲线')
% 绘制误差对比图
figure
plot(abs(error1),'-*')
hold on
plot(abs(error0),'-or')
title(['SVM的MSE:',num2str(mse0),newline,'DBO-SVM的MSE:',num2str(mse1)])
xlabel('预测样本','fontsize',12)
ylabel('误差绝对值','fontsize',12)
legend('DBO-SVM预测器预测','SVM预测器预测')
% 绘制结果对比曲线图
figure
plot(output_test,'b-.')
hold on
plot(test_simu0,'r')
hold on
plot(test_simu1,'g')
hold off
grid on
title(['结果对比曲线图'])
legend('真实值','SVM预测值','DBO-SVM预测值')
xlabel('样本编号')
ylabel('负荷值')%% 回归图与误差直方图
figure;
plotregression(test_simu1,output_test,['优化后回归图']);
set(gcf,'color','w')figure;
ploterrhist(test_simu1-output_test,['误差直方图']);
set(gcf,'color','w')%% 打印出评价指标
% 预测结果评价
ae= abs(test_simu1-output_test);
rmse = (mean(ae.^2)).^0.5;
mse = mean(ae.^2);
mae = mean(ae);
mape = mean(ae./test_simu1);
[R,r] = corr(output_test,test_simu1);
R2 = 1 - norm(output_test -  test_simu1)^2 / norm(output_test-mean(output_test ))^2;
disp('预测结果评价指标:')
disp(['RMSE = ', num2str(rmse)])
disp(['MSE  = ', num2str(mse)])
disp(['MAE  = ', num2str(mae)])
disp(['MAPE = ', num2str(mape)])
disp(['决定系数R^2为:',num2str(R2)])

代码获取

完整代码获取,点击下方卡片,后台回复关键词:

DBOSVM

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/93749.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

按照json文件的值复制图片

按照json文件的值复制图片 文件格式处理当前JSON代码封装增加批处理 文件格式 0是不挑选,1是挑选 处理当前JSON # coding: utf-8 from PIL import Image, ImageDraw, ImageFont import os import shutil import cv2 as cv import numpy as np import jsondef read…

linux定时删除服务器日志

不说废话。直接进入操作流程 linux 定时任务是用的crontab 查看 crontab是否启动 service crond statusdead 死的 启动crontab service crond start 再次查看状态 running 运转的 查看 crontab cat /etc/crontab 查看 crontab任务 crontab -l 编辑 crontab任务 crontab …

大数据专业毕业能从事什么工作

大数据从业领域很宽广,不管是科技领域还是食品产业,零售业等都是需要大数据人才进行大数据的处理,以提供更好的用户体验,优化库存降低成本预测需求。 大数据开发做什么? 大数据开发分两类,编写Hadoop、Spa…

Java中支持分库分表的框架/组件/中间件简介

文章目录 1 sharding-jdbc2 TSharding3 Atlas4 Cobar5 MyCAT6 TDDL7 Vitess 列举一些比较常见的,简单介绍一下: sharding-jdbc(当当) TSharding(蘑菇街) Atlas(奇虎360) Cobar&#…

Vue3 学习 组合式API setup语法糖 响应式 指令 DIFF(一)

文章目录 前言一、Composition Api二、setup语法糖三、响应式refreactive 四、其他一些关键点v-prev-oncev-memov-cloak 五、虚拟Dom五、diff算法 前言 本文用于记录学习Vue3的过程 一、Composition Api 我觉得首先VUE3最大的改变就是对于代码书写的改变,从原来选择…

五子棋游戏禁手算法的改进

五子棋游戏禁手算法的改进 五子棋最新的禁手规则: 1.黑棋禁手判负、白棋无禁手。黑棋禁手有“三三”(包括“四三三”)、“四四”(包括“四四三”)和“长连”。黑棋只能以“四三”取胜。 2.黑方…

面试被打脸,数据结构底层都不知道么--回去等通知吧

数据结构之常见的8种数据结构: -数组Array -链表 Linked List -堆 heap -栈 stack -队列 Queue -树 Tree -散列表 Hash -图 Graph 数据结构-链表篇 Linklist定义: -是一种线性表,并不会按线性的顺序存储数据,即逻辑上相邻…

一种改进多旋翼无人机动态仿真的模块化仿真环境研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

Maven之hibernate-validator 高版本问题

hibernate-validator 高版本问题 hibernate-validator 的高版本(邮箱注解)依赖于高版本的 el-api,tomcat 8 的 el-api 是 3.0,满足需要。但是 tomcat 7 的 el-api 只有 2.2,不满足其要求。 解决办法有 2 种&#xff…

2023.9.1 简单认识 JVM

目录 JVM 内存划分 本地方法栈 虚拟机栈 程序计数器 堆区 元数据区 JVM 类加载机制 加载 验证 准备 解析 初始化 类被加载的几种情况(懒汉模式 ---> 只要被用到才会被加载) 双亲委派模型 JVM 内存划分 JVM 是一个应用程序,在…

万级数据优化EasyExcel+mybatis流式查询导出封装

文章目录 前言.万级数据优化一. 直接上流式查询封装工具代码二. 传统分页导出查询三. 流式查询概念游标查询 前言.万级数据优化 我们不妨先给大家讲一个概念,利用此概念我们正好给大家介绍一个数据库优化的小技巧: 需求如下:将一个地市表的数…

创建型模式-建造者模式

使用多个简单的对象一步一步构建成一个复杂的对象 主要解决:主要解决在软件系统中,有时候面临着"一个复杂对象"的创建工作,其通常由各个部分的子对象用一定的算法构成;由于需求的变化,这个复杂对象的各个部…