ICCV 2023 | 利用双重聚合的Transformer进行图像超分辨率

导读
本文提出一种同时利用图像空间和通道特征的 Transformer 模型,DAT(Dual Aggregation Transformer),用于图像超分辨(Super-Resolution,SR)任务。DAT 以块间和块内的双重方式,在空间和通道维度上实现特征聚合,从而具有强大的图像表示能力。具体来说,DAT 在连续的 Transformer 块中交替应用空间和通道自注意力,以实现块间聚合。同时,本文还提出自适应交互模块(Adaptive Interaction Module,AIM)和空间门前馈网络(Spatial-Gate Feed-forward Network,SGFN)来实现块内特征聚合。AIM 从空间与通道为徒改进现有注意力机制,SGFN 在前馈网络中引入了非线性空间信息。实验证明,DAT 实现目前最先进的图像超分辨率性能。

论文连接: https://arxiv.org/abs/2308.03364
代码连接: https://github.com/zhengchen1999/DAT

01. 研究问题

图像超分辨率(Image Super-Resolution,简称图像 SR)是一种图像处理技术,旨在通过增加图像的细节和清晰度,将低分辨率(LR)图像转换为高分辨率(HR)图像。简单来说,就是将一张小尺寸的模糊图像,变成大尺寸的清晰图像。图像超分辨率技术在实际应用中具有广泛的用途,包括高清电视、监控摄像头、医学影像、卫星图像等。现如今,随着人工智能、机器学习的发展,使用深度学习技术的图像超分辨率成为主流。

02. 方法动机

目前,Transformer 在 SR 任务中表现出色。其核心是自注意力(Self-Attention,SA)机制,能够建立全局依赖关系。而全局关系的建立,对于高分辨率图像的重建尤为重要。然而,全局SA的计算复杂度与图像大小成平方比,这极大的限制了其在高分辨率图像上的应用(这在图像 SR 中很常见)。考虑到这个原因,一些研究人员提出更加高效的 SA,以有效利用 Transformer。总的来说可以分为空间通道两个方面:

  • 空间方面,局部空间窗口被提出来限制全局 SA 的应用范围,从而提出局部窗口注意力(Spatial-Window Self-Attention,SW-SA)。如图(a),空间维度H×W 被划分为多个窗口,注意力在每个窗口中被执行。
  • 通道方面,提出通道自注意力(Channel-Wise Self-Attention,CW-SA)。如图(b),注意力沿着通道维度 C 计算。也就是图中每一个独立的块都作为一个 token

图片1. 不同自注意力机制示意图

这些方法都在降低计算复杂度的同时,实现优异的性能。同时这两种方法对于图像特征( H×W×C )的建模,是针对不同(空间与通道)的维度的。那么,是否可以同时考虑两个维度,在现有方法的基础上,进一步提高Transformer的建模能力,实现更加出色的超分辨率性能呢?

受以上发现的启发,我们提出 DAT(Dual Aggregation Transformer),通过块间和块内双重方式,实现空间和通道特征有效融合。具体来说,我们在连续的 Transformer 块中交替应用 SW-SA 和 CW-SA 。通过这在交替的方式,DAT 能够同时捕获空间和通道信息,实现块间特征聚合。同时,为了实现块内特征聚合,我们还提出自适应交互模块(Adaptive Interaction Module,AIM)和空间门前馈网络(Spatial-Gate Feed-forward Network,SGFN)。AIM 对 SW-SA 和 CW-SA 建模单一维度进行改进,SGFN 则在前馈网络中引入非线性空间信息。

总体而言,我们的贡献可以总结为以下三点:

  • 设计了一种新的图像超分辨率模型:DAT。该模型以块间和块内双重方式聚合空间和通道特征,增强 Transformer 的建模能力。
  • 交替应用空间和通道自注意力,实现块间特征聚合。此外,还提出 AIM 和 SGFN 来实现块内特征聚合。
  • 进行了大量实验,证明提出的 DAT 实现最先进的图像超分辨率性能,同时保持较低的复杂性和模型大小。

03. 方法介绍

在本节中,我们首先介绍 DAT 的架构。 随后,我们详细阐述自适应交互模块(AIM)和空间门前馈网络(SGFN)两个组件。

3.1 模型架构

图片2. 模型架构

正如前文提到,在 DAT 中,我们以交替的方式同时使用 SW-SA 和 CW-SA 两种注意力模块。这种组合,能够对两个维度的特征进行建模,并利用它们的优势互补:

  • SW-SA 对空间上下文进行建模,增强每个特征图的空间表达。
  • CW-SA 可以更好地构建通道之间的依赖关系,扩大感受野,从而帮助 SW-SA 捕获空间特征。

因此,空间和通道信息在连续的 Transformer 块之间流动,以此实现块间特征聚合。

3.2 自适应交互模块(AIM)

图片3. 自适应交互模块(AIM)

我们提出的 AIM 对 SW-SA 和 CW-SA 实现进一步改进。首先,考虑到自注意力主要是捕获全局特征,我们增加了与自注意力模块平行的卷积分支,依次引入局部性到 Transformer 中。接着,考虑到虽然交替执行 SW-SA 和 CW-SA 可以在块间实现空间与通道的特征聚合,但是对于每个自注意力(SA)而言,不同维度的信息仍然无法有效利用。因此,我们提出了AIM(灰色阴影区),作用于两个分支之间,并根据分支的类型,从空间或通道维度自适应地重新加权特征,从而在单个注意力模块中实现空间和通道信息的聚合。

综合上述改进,我们在 SW-SA 和 CW-SA 的基础上,提出改进版的自适应空间自注意力(Adaptive Spatial Self-Attention,AS-SA)和 自适应通道自注意力(Adaptive Channel Self-Attention,AC-SA)。

相比原始自注意力机制,我们的方法具有:

  • 局部(卷积)和全局(注意力)更好的耦合:两个分支的输出可以自适应调整以相互适应、融合。
  • 更强的建模能力:对于 SW-SA,互补通道信息提高了其通道建模能力;对于 AC-SA,通过空间交互,额外的空间知识同样增强特征表征能力。

3.3 空间门前馈网络(SGFN)

图片4. 空间门前馈网络(SGFN)

传统的前馈网络(Feed-Forward Network,FFN)有线性层和非线性激活组成。只能够对特征通道进行建模, 但忽略了建模空间信息。 此外,FFN会通过线性层在内部对特征通道进行放大,这导致通道之间存在冗余,从而阻碍了特征表达能力。

为了克服上述问题,我们提出了 SGFN:将空间门控(Spatial-Gate,SG)引入到 FFN 中。SG 是一个简单的门空机制,由深度卷积和逐元素乘法组成。同时,我们将特征图沿着通道维度,均匀的分为两个部分,分别送入卷积和乘法旁路中,以此来降低通道冗余性。并且该操作也能有效降低计算复杂度。

整体来看,AIM 和 SGFN 是 Transformer 块的两个主要组成。通过这个两个模块,我们实现块内的特征聚合:

  • AIM 从通道维度增强 SW-SA,并从空间维度增强 CW-SA。
  • SGFN 将非线性空间信息引入仅建模通道关系的 FFN 中。

04. 实验结果

消融实验:我们对提出方法的各个进行详尽的消融实验,证明了方法的有效性。

图片5. 消融实验

定量对比:我们提出了2个不同大小的模型变体(DAT-S、DAT),与目前最先进的图像超分辨率方法,在5个基准数据集上进行对比。如下表所示,我们的方法取得了最先进的结果。

图片6. 定量对比,最优结果着红色,次优结果着红色

视觉对比:我们在下图中展示了视觉效果的对比结果。可以发现,我们的方法在细节的重建上具有明显的优势。

图片7. 视觉对比

模型大小:我们还提供了模型大小(Params)、复杂度(FLOPs)、性能上的综合对比。我们的方法在实现性能提升的同时,也保持了较低的复杂性和模型大小。

图片8. 模型大小

05. 结论

本文提出了 DAT(Dual Aggregation Transformer),是一种用于图像超分辨率 Transformer 模型。 DAT 以块间和块内双重方式,聚合空间和通道特征,实现强大的建模能力。 具体来说,连续的 Transformer 块交替应用空间窗口和通道自注意力,并实现了空间和通道维度在块间的特征聚合。 此外,本文还提出了自适应交互模块(Adaptive Interaction Module,AIM)和空间门前馈网络(Spatial-Gate Feed-forward Network,SGFN),以在两个维度上实现块内特征聚合,从而增强每个 Transformer 块。 AIM从两个维度增强自注意力机制的建模能力。 而 SGFN 用非线性空间信息补充前馈网络。 实验证明,DAT 实现目前最先进的图像超分辨率性能。

作者:陈铮


  关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/93802.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为云云服务器评测|华为云云耀云服务器L实例使用教学

文章目录 教学小故事 教学 华为云云耀云服务器L实例是一款提供高效、可靠、安全的基础设施服务的云服务器。下面是使用教学: 登录华为云官网。 测评产品链接:https://www.huaweicloud.com/product/hecs-light.html 进入云耀云服务器管理控制台&#xf…

机器学习笔记之最优化理论与方法(四) 凸函数:定义与基本性质

机器学习笔记之最优化理论与方法——再回首:凸函数定义与基本性质 引言凸函数的定义严格凸函数凸函数的推论:凹函数 常见凸函数凸函数的基本性质几种保持函数凸性的运算凸集与凸函数之间的关联关系 引言 本节将介绍凸函数定义及其基本性质。 本文是关于…

高级IO(select、poll、epoll)

在介绍本文之前,先提出一个问题 什么是IO? 等数据拷贝 1.等 - IO事件就绪(检测功能成分) 2.数据拷贝 高效的IO就是:单位时间,等的比重越小,IO的效率越高 五种IO模型 IO模型: 阻塞式…

智慧水产养殖方案,守护养殖水产品安全!

水产品在人们的饮食文化中占据着举足轻重的地位,更是人们摄入蛋白质的重要来源。因此,保障食品安全,提升养殖水产品的品质至关重要然。而传统的人工观察水产养殖方式较为单一,难以及时发现水质问题和投喂情况,容易导致…

如何将国标规范用EndNote插入到英文期刊中,自定义文献插入指南

EndNote自定义文献 1.插入国标JTG 2034-2020这种新建一个Standard![](https://img-blog.csdnimg.cn/406cf11d1496431a9cf784f3ab71c6a1.png)Reference填入信息参考 插入英文期刊规范ASTM 1.插入国标JTG 2034-2020这种 首先找到大家要投稿的英文期刊,然后去找那些中…

云计算环境中高性能计算的挑战与对策

文章目录 云计算中的高性能计算挑战1. 资源竞争:2. 网络延迟:3. 数据传输效率:4. 虚拟化开销:5. 节点异构性: 高性能计算在云计算环境中的对策1. 定制化虚拟机镜像:2. 弹性资源调整:3. 高效数据…

el-date-picker 等 点击无反应不回显问题解决

如上图&#xff0c;编辑回显正常&#xff0c;但是时间控件在拖动过程中时间不会跟随改变。 解决办法&#xff1a; <el-date-picker input"onInput()" ...><el-input input"onInput()" ...>js中onInput() {this.$forceUpdate();},

前端实习第七周周记

前言 第六周没写&#xff0c;是因为第六周的前两天在处理第五周的样本库部分。问题解决一个是嵌套问题&#xff08;因为我用到了递归&#xff09;&#xff0c;还有一个问题在于本机没有问题&#xff0c;打包上线接口404。这个问题我会在这周的总结中说。 第六周第三天才谈好新…

Nginx 高级配置

目录 1 网页的状态页 2 Nginx 第三方模块 2.1 ehco 模块 3 变量 3.1 内置 3.2 定义变量 4 Nginx压缩功能 5 https 功能 6 自定义图标 1 网页的状态页 基于nginx 模块 ngx_http_stub_status_module 实现&#xff0c;在编译安装nginx的时候需要添加编译参数 --with-http…

JVM第一篇 认识java虚拟机

目录 1. 什么是java虚拟机 2. java虚拟机分类 2.1. 商用虚拟机 2.2. 嵌入式虚拟机 3.java虚拟机架构 4.java虚拟机运行过程 1. 什么是java虚拟机 传统意义上的虚拟机是一种抽象化的计算机&#xff0c;通过在实际的计算机上仿真模拟各种计算机功能来实现的&#xff0c;是操…

动态维护直径 || 动态维护树上路径 || 涉及LCA点转序列 || 对欧拉环游序用数据结构维护:1192B

https://www.luogu.com.cn/problem/CF1192B 对于直径的求法&#xff0c;常用dp或两次dfs&#xff0c;但如果要动态维护似乎都不太方面&#xff0c;那么可以维护树上路径最大值。 树上路径为&#xff1a; d e p u d e p v − 2 d e p l c a ( u , v ) dep_udep_v-2\times de…

无门槛访问ChatGPT升级版-数据指北AI

大家好&#xff0c;我是脚丫先生 (o^^o) 给小伙伴们介绍ChatGPT升级版不需要任何门槛&#xff0c;不需要单独搞账号&#xff0c;只要邮箱登录的方式&#xff0c;即可访问平台&#xff0c;以用户体验为首要&#xff0c;让所有人都能无门槛的使用目前市面上最强大的AI智能聊天&a…