时序预测 | MATLAB实现EEMD-SSA-LSTM、EEMD-LSTM、SSA-LSTM、LSTM时间序列预测对比

时序预测 | MATLAB实现EEMD-SSA-LSTM、EEMD-LSTM、SSA-LSTM、LSTM时间序列预测对比

目录

    • 时序预测 | MATLAB实现EEMD-SSA-LSTM、EEMD-LSTM、SSA-LSTM、LSTM时间序列预测对比
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1
在这里插入图片描述

在这里插入图片描述

基本介绍

时序预测 | MATLAB实现EEMD-SSA-LSTM、EEMD-LSTM、SSA-LSTM、LSTM时间序列预测对比

模型描述

麻雀搜索算法(Sparrow Search Algorithm, SSA)是于2020年提出的。SSA 主要是受麻雀的觅食行为和反捕食行为的启发而提出的。该算法比较新颖,具有寻优能力强,收敛速度快的优点。建立麻雀搜索算法的数学模型,主要规则如下所述:
(1)发现者通常拥有较高的能源储备并且在整个种群中负责搜索到具有丰富食物的区域,为所有的加入者提供觅食的区域和方向。在模型建立中能量储备的高低取决于麻雀个体所对应的适应度值(Fitness Value)的好坏。
(2)一旦麻雀发现了捕食者,个体开始发出鸣叫作为报警信号。当报警值大于安全值时,发现者会将加入者带到其它安全区域进行觅食。
(3)发现者和加入者的身份是动态变化的。只要能够寻找到更好的食物来源,每只麻雀都可以成为发现者,但是发现者和加入者所占整个种群数量的比重是不变的。也就是说,有一只麻雀变成发现者必然有另一只麻雀变成加入者。
(4)加入者的能量越低,它们在整个种群中所处的觅食位置就越差。一些饥肠辘辘的加入者更有可能飞往其它地方觅食,以获得更多的能量。
(5)在觅食过程中,加入者总是能够搜索到提供最好食物的发现者,然后从最好的食物中获取食物或者在该发现者周围觅食。与此同时,一些加入者为了增加自己的捕食率可能会不断地监控发现者进而去争夺食物资源。
(6)当意识到危险时,群体边缘的麻雀会迅速向安全区域移动,以获得更好的位置,位于种群中间的麻雀则会随机走动,以靠近其它麻雀。
长短期记忆网络——通常被称为 LSTM,是一种特殊的 RNN,能够学习长期依赖性。由 Hochreiter 和 Schmidhuber(1997)提出的,并且在接下来的工作中被许多人改进和推广。LSTM 在各种各样的问题上表现非常出色,现在被广泛使用。LSTM 被明确设计用来避免长期依赖性问题。长时间记住信息实际上是 LSTM 的默认行为,而不是需要努力学习的东西!
所有递归神经网络都具有神经网络的链式重复模块。在标准的 RNN 中,这个重复模块具有非常简单的结构

程序设计

  • 完整程序和数据下载方式:私信博主回复MATLAB实现EEMD-SSA-LSTM、EEMD-LSTM、SSA-LSTM、LSTM时间序列预测对比
%% 采用ssa优化
[x ,fit_gen,process]=ssaforlstm(XTrain,YTrain,XTest,YTest);%分别对隐含层节点 训练次数与学习率寻优
%% 参数设置
pop=5; % 种群数
M=20; % 最大迭代次数
%初始化种群
for i = 1 : popfor j=1:dimif j==1%除了学习率 其他的都是整数x( i, j ) = (ub(j)-lb(j))*rand+lb(j);elsex( i, j ) = round((ub(j)-lb(j))*rand+lb(j));endendfit( i )=fitness(x(i,:),P_train,T_train,P_test,T_test);
end
pFit = fit;
pX = x;
fMin=fit(1);
bestX = x( i, : );for t = 1 : M[ ~, sortIndex ] = sort( pFit );% Sort.从小到大[fmax,B]=max( pFit );worse= x(B,:);r2=rand(1);%%%%%%%%%%%%%5%%%%%%这一部位为发现者(探索者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%if(r2<0.8)%预警值较小,说明没有捕食者出现for i = 1 : pNum  %r2小于0.8的发现者的改变(1-20% Equation (3)r1=rand(1);x( sortIndex( i ), : ) = pX( sortIndex( i ), : )*exp(-(i)/(r1*M));%对自变量做一个随机变换x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%对超过边界的变量进行去除fit(  sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);endelse   %预警值较大,说明有捕食者出现威胁到了种群的安全,需要去其它地方觅食for i = 1 : pNum   %r2大于0.8的发现者的改变x( sortIndex( i ), : ) = pX( sortIndex( i ), : )+randn(1)*ones(1,dim);x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );fit(  sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);endend[ ~, bestII ] = min( fit );bestXX = x( bestII, : );%%%%%%%%%%%%%5%%%%%%这一部位为加入者(追随者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%for i = ( pNum + 1 ) : pop     %剩下20-100的个体的变换                % Equation (4)%         i%         sortIndex( i )A=floor(rand(1,dim)*2)*2-1;if( i>(pop/2))%这个代表这部分麻雀处于十分饥饿的状态(因为它们的能量很低,也是是适应度值很差),需要到其它地方觅食x( sortIndex(i ), : )=randn(1,dim).*exp((worse-pX( sortIndex( i ), : ))/(i)^2);else%这一部分追随者是围绕最好的发现者周围进行觅食,其间也有可能发生食物的争夺,使其自己变成生产者x( sortIndex( i ), : )=bestXX+(abs(( pX( sortIndex( i ), : )-bestXX)))*(A'*(A*A')^(-1))*ones(1,dim);endx( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%判断边界是否超出fit(  sortIndex( i ) )=fitness(x(sortIndex( i ),:),P_train,T_train,P_test,T_test);end%%%%%%%%%%%%%5%%%%%%这一部位为意识到危险(注意这里只是意识到了危险,不代表出现了真正的捕食者)的麻雀的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%c=randperm(numel(sortIndex));%%%%%%%%%这个的作用是在种群中随机产生其位置(也就是这部分的麻雀位置一开始是随机的,意识到危险了要进行位置移动,%处于种群外围的麻雀向安全区域靠拢,处在种群中心的麻雀则随机行走以靠近别的麻雀)b=sortIndex(c(1:pop));for j =  1  : length(b)      % Equation (5)if( pFit( sortIndex( b(j) ) )>(fMin) ) %处于种群外围的麻雀的位置改变x( sortIndex( b(j) ), : )=bestX+(randn(1,dim)).*(abs(( pX( sortIndex( b(j) ), : ) -bestX)));else%处于种群中心的麻雀的位置改变x( sortIndex( b(j) ), : ) =pX( sortIndex( b(j) ), : )+(2*rand(1)-1)*(abs(pX( sortIndex( b(j) ), : )-worse))/ ( pFit( sortIndex( b(j) ) )-fmax+1e-50);endx( sortIndex(b(j) ), : ) = Bounds( x( sortIndex(b(j) ), : ), lb, ub );fit(  sortIndex( b(j)  ) )=fitness(x(sortIndex( b(j) ),:),P_train,T_train,P_test,T_test);end

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502
[3] https://blog.csdn.net/article/details/126043107?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/94019.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安全帽人脸联动闸机开关算法

安全帽人脸联动闸机开关算法通过yolov7python网络模型深度学校框架 &#xff0c;安全帽人脸联动闸机开关算法能够判断人员是否穿戴规定的工装是不是现场人员&#xff0c;当穿戴合规且为现场人员&#xff0c;闸机门禁才打开。YOLO的结构非常简单&#xff0c;就是单纯的卷积、池化…

Linux--VMware的安装和Centos

一、VMware和Linux的关系 二、VMware的安装 VM_ware桌面虚拟机 最新中文版 软件下载 (weizhen66.cn) VMware-Workstation-Lite-16.2.2-19200509-精简安装注册版.7z - 蓝奏云 如果安装不成功&#xff0c;则设置BIOS 三、在VMware中加入Centos 下载地址&#xff1a; CentOS-…

使用DOSBOX运行TurboC2,TC2使用graphics库绘图

Turbo C是由美国Borland公司开发的一套C语言程序开发工具&#xff0c;Borland公司是一家专门从事软件开发、研制的大公司。该公司相继推出了一套Turbo系列软件&#xff0c;如Turbo BASIC、Turbo Pascal、Turbo Prolog&#xff0c;这些软件很受用户欢迎 [1] 。 Turbo C集成了程序…

Mac 多版本jdk安装与切换

macOS上可以安装多个版本的jdk&#xff0c;方法如下&#xff1a; 1.下载jdk 在Oracle官网上下载不同版本的jdk&#xff1a; https://www.oracle.com/java/technologies/downloads/#java17 方案一 1.查看本机所有的jdk /usr/libexec/java_home -V3. 配置环境变量 打开bash_…

OceanBase安全审计之传输加密

上一期我们讲了关于 OceanBase 安全审计的《身份鉴别》和《用户管理与访问控制》 两个部分&#xff0c;OceanBase 的安全机制介绍其支持传输加密&#xff0c;今天我们主要来实践一下如何配置传输加密以及验证是否真的加密。 作者&#xff1a;金长龙 爱可生测试工程师&#xff0…

【计算机基础】Git从安装到使用,详细每一步!扩展Github\Gitlab

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

maven本地安装jar包install-file,解决没有pom的问题

背景&#xff1a; 公司因为权限问题&#xff0c;没有所有的代码&#xff0c;内部maven还在搭建&#xff0c;所以需要拿到同事的jar包&#xff0c;本地install&#xff1a; mvn install:install-file -DgroupIdcom..framework -DartifactIdcloud-api -Dversion1.0.0-SNAPSHOT …

最详细Maven下载、安装、配置教程

Maven是一个跨平台的项目管理工具。作为Apache组织的一个颇为成功的开源项目&#xff0c;其主要服务于基于Java平台的项目创建&#xff0c;依赖管理和项目信息管理。maven是Apache的顶级项目&#xff0c;解释为“专家&#xff0c;内行”&#xff0c;它是一个项目管理的工具&…

【App端】uni-app使用百度地图api和echarts省市地图下钻

目录 前言方案一&#xff1a;echarts百度地图获取百度地图AK安装echarts和引入百度地图api完整使用代码 方案二&#xff1a;echarts地图和柱状图变形动画实现思路完整使用代码 方案三&#xff1a;中国地图和各省市地图下钻实现思路完整使用代码 前言 近期的app项目中想加一个功…

QEMU 啓動gdb 調試

背景 上一章介紹了如何使用QEMU 運行RISC-V 程序, GDB 作爲強大的代碼調試工具,對軟件開發至關重要,本章介紹如何啓動GDB 調試 CSDNhttps://mp.csdn.net/mp_blog/creation/editor/132522853 開啓GDB 服務 QEMU 啓動時添加-s參數, 代碼啓用本地GDB 服務, 默認端口號爲1234.…

基于单片机的串行通信发射机设计

一、项目介绍 串行通信是一种常见的数据传输方式&#xff0c;允许将数据以比特流的形式在发送端和接收端之间传输。当前实现基于STC89C52单片机的串行通信发射机&#xff0c;通过红外发射管和接收头实现自定义协议的数据无线传输。 二、系统设计 2.1 单片机选择 在本设计中&…

十五、pikachu之CSRF

文章目录 一、CSRF概述二、CSRF实战2.1 CSRF(get)2.2 CSRF之token 一、CSRF概述 Cross-site request forgery 简称为“CSRF”&#xff0c;在CSRF的攻击场景中攻击者会伪造一个请求&#xff08;这个请求一般是一个链接&#xff09;&#xff0c;然后欺骗目标用户进行点击&#xf…