论文阅读_医疗知识图谱_GraphCare

英文名称: GraphCare: Enhancing Healthcare Predictions with Open-World Personalized Knowledge Graphs
中文名称: GraphCare:通过开放世界的个性化知识图增强医疗保健预测
文章: http://arxiv.org/abs/2305.12788
代码: https://github.com/pat-jj/GraphCare
作者: Pengcheng Jiang, Cao Xiao, Adam Cross, Jimeng Sun, 伊利诺伊大学
日期: 2023-05-22

1 读后感

来自 230825 学习会小丁分享

之前做医疗知识图谱和医疗预测时,最困难的问题包括:

  • 如何结合现有的数据和知识
  • 非结构化的文本类知识如何与数据结合
  • 知识图结构如何设计,如何使用
  • 如何引入时序的逻辑
  • 如何使用大模型的知识和常识

不仅医疗领域,这些问题几乎存在于所有领域的建模。论文 GraphCare 对此进行了探索。这里只展示了不同知识图的优化效果,实际工作中,知识图生成的患者描述特征还可以与患者的检查,检验信息结合,使模型达到更优的效果。

2 介绍

文章主要针对的问题是:如何结合 患者情况医疗知识 做出医疗预测。这里的医疗知识来自知识图谱,文章提出的改进主要针对知识图谱部分。包括以下三点:

  • 使用大模型中的知识填充图谱中的知识盲区(题目中的 Open-world 概念)。
  • 设计了针对个人的知识图谱结构。
  • 提出了双向注意力增强 (BAT) 图神经网络 (GNN) 。
    数据使用 MIMIC 3/4,主要针对:死亡率、再入院、住院时间和药物建议 进行预测,与GNN相比几种预测的AUROC均有提升,且使用更少数据就能建模。

3 方法

3.1 生成特定概念的知识图

这里的特定概念指的是医疗代码 e ∈ {c, p, d},三个字母分别代表:诊断、治疗和药物。对每个医疗代码,提取其知识图 Ge = (Ve, Ee),其中V是结点 E是边。

3.1.1 建图

使用两种方法建图:

  • 使用自然语言大模型构建
    调用大模型,主要技术是设计提示模板,解析模型的返回结果,以及填充图。模板由三部分组成:指令(让模型做什么)、示例(返回结果什么样)、提示词(具体见附录C.1);返回得到头实体,关系,尾实体的三元组;对于每个医疗代码,运行χ次,构造其知识图。
  • 从现有知识图中取子图构建
    为更好利用现有知识和知识图,通过子图采样提取医学代码的特定概念图。先识别现有生物医学知识图谱中与医学代码 e 对应的实体,然后随机采样源自实体的 κ 跳子图(具体见附录C.2)。

3.1.2 对点和边聚类

使用文本构建的图,常会出现同概念对应多个描述的问题,这里使用聚类方法,合并概念。通过大语言模型,可以得到文本的嵌入,使用嵌入分别对结点和边聚类。

对全局图中相似的节点和边进行分组所有概念(如图-1所示)。经过聚类后,将原始图 G 中的节点 V 和边 E 映射到新的节点 V′ 和边 E′,获得新的全局图 G′ = (V′ , E′ ),并为每个医疗代码创建一个新的图 G′e = (V′e, E′e) ⊂ G′。节点嵌入和边嵌入由每个簇中的平均词嵌入初始化。

4 生成患者知识图

这里分两个维度描述患者:患者医疗代码(得了什么病,不只一种病),患者的多次就诊。
针对每位患者,建立患者节点 P,并将其连接到图中的直接医疗代码。患者的个性化 KG 可以表示为 Gpat = (Vpat, Epat),其中 Vpat = P ∪ {V′e1 , V′e2 , …, V′eω } ;由于患者可能多次就诊,将患者 i 的访问子图可以表示为 Gpat(i) = {Gi,1, Gi,2, …, Gi,J } = {(Vi,1, Ei,1), (Vi,2, Ei,2), …, (Vi,J , Ei,J )} 。

4.1 双向注意力增强图神经网络

图神经网络最终的输出一般是用向量(数组)表征的结点,比如最终用数组描述每位患者的情况,然后将患者作为实例,数组作为特征 X,以最终目标(如:是否死亡作)为 y 代入模型训练。以此实现对不同任务的预测。如果在训练模型时加入患者的其它特征,如实验室检验等数值型数据,模型就同时支持了患者数据和知识。

图神经网络的原理是聚合邻域节点信息来表示当前节点,从而学习图中的关系。相对于一般的 GNN 神经网络,文中提出了双向注意力增强网络(Bi-attention Augmented (BAT) GNN) 机制。具体方法如下:

  • 首先将词嵌入转换到隐藏嵌入减少节点和边嵌入的大小,以提高模型的效率并处理稀疏问题。
  • 两个注意力权重:一个关注子图,一个关注子图中的结点:
    α i , j , 1 , … , α i , j , M = Softmax ⁡ ( W α g i , j + b α ) , β i , 1 , … , β i , N = λ ⊤ Tanh ⁡ ( w β ⊤ G i + b β ) , where  λ = [ λ 1 , … , λ N ] , \begin{array}{l} \alpha_{i, j, 1}, \ldots, \alpha_{i, j, M}=\operatorname{Softmax}\left(\mathbf{W}_{\alpha} \mathbf{g}_{i, j}+\mathbf{b}_{\alpha}\right), \\ \beta_{i, 1}, \ldots, \beta_{i, N}=\lambda^{\top} \operatorname{Tanh}\left(\mathbf{w}_{\beta}^{\top} \mathbf{G}_{i}+\mathbf{b}_{\beta}\right), \quad \text { where } \quad \boldsymbol{\lambda}=\left[\lambda_{1}, \ldots, \lambda_{N}\right], \end{array} αi,j,1,,αi,j,M=Softmax(Wαgi,j+bα),βi,1,,βi,N=λTanh(wβGi+bβ), where λ=[λ1,,λN],
    患者 i 第 j 个访问子图中第 k 个节点的节点级注意力权重为 αi,j,k,患者 i 的第 j 次就诊,表示为 βi,j;g 描述 患者 i 第 j 次就诊是否涉及实体 k ,M是全局中的结点数,N是最大就诊次数;W和b是待学习的参数;λ是衰减系数,用于描述:就诊次数时间越接近,重要性越高。

参数的初始化利用了大模型返回的词嵌入,Wα的初值根据节点嵌入与目标(如死亡)的cosine距离设定,即节点描述与目标词义越相近,权重越高。最终计算出各个节点的隐藏层表示 h。
h i G pat  = MEAN ⁡ ( ∑ j = 1 J ∑ k = 1 K j h i , j , k ( L ) ) , h i P = MEAN ⁡ ( ∑ j = 1 J ∑ k = 1 K j 1 i , j , k Δ h i , j , k ( L ) ) , z i graph  = MLP ⁡ ( h i G pat  ) , z i node  = MLP ⁡ ( h i P ) z i joint  = MLP ⁡ ( h i G pat  ⊕ h i P ) , \begin{array}{l} \mathbf{h}_{i}^{G_{\text {pat }}}=\operatorname{MEAN}\left(\sum_{j=1}^{J} \sum_{k=1}^{K_{j}} \mathbf{h}_{i, j, k}^{(L)}\right), \quad \mathbf{h}_{i}^{\mathcal{P}}=\operatorname{MEAN}\left(\sum_{j=1}^{J} \sum_{k=1}^{K_{j}} \mathbb{1}_{i, j, k}^{\Delta} \mathbf{h}_{i, j, k}^{(L)}\right), \\ \mathbf{z}_{i}^{\text {graph }}=\operatorname{MLP}\left(\mathbf{h}_{i}^{G_{\text {pat }}}\right), \quad \mathbf{z}_{i}^{\text {node }}=\operatorname{MLP}\left(\mathbf{h}_{i}^{\mathcal{P}}\right) \quad \mathbf{z}_{i}^{\text {joint }}=\operatorname{MLP}\left(\mathbf{h}_{i}^{G_{\text {pat }}} \oplus \mathbf{h}_{i}^{\mathcal{P}}\right), \end{array} hiGpat =MEAN(j=1Jk=1Kjhi,j,k(L)),hiP=MEAN(j=1Jk=1Kj1i,j,kΔhi,j,k(L)),zigraph =MLP(hiGpat ),zinode =MLP(hiP)zijoint =MLP(hiGpat hiP),
这里又针对每位患者计算 hiG和HiP,J是就诊次数,K是访问的节点数,1iΔ,j,k ∈ {0, 1} 是一个二进制标签,指示结点 vi,j,k 是否对应于患者 i 的直接医疗代码。我理解:前者是对与患者相关的所有节点取平均 ,后者是对与患者直接相关的医疗代码取平均。最终通过组合,使用z描述患者。

4.2 训练和预测

对于每位患者,考虑其 t 次就诊的数据:{(x1), (x1, x2), . . . , (x1, x2, . . . , xt)}

  • 死亡率预测:利用患者前几次就诊预测未来是否死亡。
  • 再入院预测:根据患者前几次住院情况预测患者 15 天以内的再入院。
  • 住ICU时长预测:将问题定义为多分类,类别为: 1天内,1天,2天 … 7天,一到两周,两周以上。根据本次及前几次就诊情况,判断住ICU时长。
  • 推荐药物:根据本次及前次就诊,预测本次用药,用药可能为多种,因此定义为多标签问题。

5 实验

  • EHR 数据,并使用公开的 MIMIC-III / MIMIC-IV 数据集。
  • 构建知识图谱,使用 GPT-4 作为大模型,UMLS-KG 作为现有的大型生物医学知识图。
  • 词嵌入,使用了 GPT-3 嵌入模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/95355.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(数字图像处理MATLAB+Python)第十一章图像描述与分析-第一节、二节:图像描述概述和特征点

文章目录 一:图像描述概述(1)图像描述(2)描述子 二:特征点(1)Moravec角点检测A:原理B:程序 (2)Harris角点检测A:原理B&…

vector容器

1 vector基本概念 功能: vector数据结构和数组非常相似,也称为单端数组 vector与普通数组区别: 不同之处在于数组是静态空间,而vector可以动态扩展 动态扩展: 并不是在原空间之后续接新空间,而是找更…

基于YOLOV8模型的农作机器和行人目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOV8模型的农作机器和行人目标检测系统可用于日常生活中检测与定位农作机和行人目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标…

【半监督医学图像分割】2022-MedIA-UWI

【半监督医学图像分割】2022-MedIA-UWI 论文题目:Semi-supervise d me dical image segmentation via a triple d-uncertainty guided mean teacher model with contrastive learning 中文题目:基于对比学习的三维不确定性指导平均教师模型的半监督图像分…

使用candump+grep查看CAN报文

在Linux系统中观察看CAN报文,我们一般使用candump,但是有时候会发现总线上CAN报文太多,例如开启了好几个PDO,这就导致想看的报文被夹杂到报文的海洋里,然后再去找,非常麻烦。 candump也提供了只观察某个报…

取证工具prodiscover的基本操作

前言提醒 取证工具ProDiscover在网上讲解操作的文章实在太少,一是prodiscover是用于磁盘取证的工具,本身比较小众比不上其他的编程软件能用到的地方多,二是这个工具是用来恢复提取磁盘中被删除的文件,是比较隐晦的软件。 需要注…

iTOP-RK3588开发板Android12 设置系统默认不休眠

修改文件&#xff1a; device/rockchip/rk3588/overlay/frameworks/base/packages/SettingsProvider/res/values/defaults. xml 文件&#xff0c;如下图所示&#xff1a; - <integer name"def_screen_off_timeout">60000</integer> <integer name&q…

【MySQL】用户管理

之前我们一直都使用root身份来对mysql进行操作&#xff0c;但这样存在安全隐患。这时&#xff0c;就需要使用MySQL的用户管理 目录 一、用户 1.1 用户信息 1.2 添加用户 1.3 删除用户 1.4 修改用户密码 二、用户权限 2.1 赋予授权 2.2 回收权限 一、用户 1.1 用户信息…

【C++历险记】面向对象|菱形继承及菱形虚拟继承

个人主页&#xff1a;兜里有颗棉花糖&#x1f4aa; 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【C之路】&#x1f48c; 本专栏旨在记录C的学习路线&#xff0c;望对大家有所帮助&#x1f647;‍ 希望我们一起努力、成长&…

归并排序的详解!

本文旨在讲解归并排序的实现&#xff08;递归及非递归&#xff09;搬好小板凳&#xff0c;干货来了&#xff01; 前序&#xff1a; 在介绍归并排序之前&#xff0c;需要给大家介绍的是什么是归并&#xff0c;归并操作&#xff0c;也叫归并算法&#xff0c;指的是将两个顺序序列…

Lnmp架构

关闭防火墙 安装依赖包 yum -y install pcre-devel zlib-devel gcc gcc-c make 创建运行用户、组 编译安装Nginx 让系统识别nginx的操作命令 添加Nginx系统服务 vim /lib/systemd/system/nginx.service 编译安装mysql 安装Mysql环境依赖包 创建运行用户 编译安装 cd /opt …

香橙派Orangepi Zero2 刷机步骤

目录 1.香橙派Orangepi Zero2简介 2.刷机 2.1物料准备 2.2 格式化SD卡 2.3 烧录镜像到SD卡 2.4 安装SD卡到Orangepi 2.5 连接Pi电源 2.6 MobaXterm 串口登陆Orangepi 2.6.1 连线示意图 2.6.2 MobaXterm 使用 2.6.3修改登陆密码 2.6.4 网络配置 2.7 SSH登陆开发版…