Linux内核代码中常用的数据结构

Linux内核代码中广泛使用了数据结构和算法,其中最常用的两个是链表和红黑树。

链表

Linux内核代码大量使用了链表这种数据结构。链表是在解决数组不能动态扩展这个缺陷而产生的一种数据结构。链表所包含的元素可以动态创建并插入和删除。

链表的每个元素都是离散存放的,因此不需要占用连续的内存。链表通常由若干节点组成,每个节点的结构都是一样的,由有效数据区和指针区两部分组成。有效数据区用来存储有效数据信息,而指针区用来指向链表的前继节点或者后继节点。因此,链表就是利用指针将各个节点串联起来的一种存储结构。

(1)单向链表

单向链表的指针区只包含一个指向下一个节点的指针,因此会形成一个单一方向的链表,如下代码所示。

struct list {int data;   /*有效数据*/struct list *next; /*指向下一个元素的指针*/
};

如图所示,单向链表具有单向移动性,也就是只能访问当前的节点的后继节点,而无法访问当前节点的前继节点,因此在实际项目中运用得比较少。

单向链表示意图

(2)双向链表

如图所示,双向链表和单向链表的区别是指针区包含了两个指针,一个指向前继节点,另一个指向后继节点,如下代码所示。

struct list {int data;   /*有效数据*/struct list *next; /*指向下一个元素的指针*/struct list *prev; /*指向上一个元素的指针*/
};

双向链表示意图

(3)Linux内核链表实现

单向链表和双向链表在实际使用中有一些局限性,如数据区必须是固定数据,而实际需求是多种多样的。这种方法无法构建一套通用的链表,因为每个不同的数据区需要一套链表。

为此,Linux内核把所有链表操作方法的共同部分提取出来,把不同的部分留给代码编程者自己去处理。

Linux内核实现了一套纯链表的封装,链表节点数据结构只有指针区而没有数据区,另外还封装了各种操作函数,如创建节点函数、插入节点函数、删除节点函数、遍历节点函数等。

Linux内核链表使用 struct list_head 数据结构来描述。

<include/linux/types.h>struct list_head {struct list_head *next, *prev;
};

struct list_head数据结构不包含链表节点的数据区,通常是嵌入其他数据结构,如struct page数据结构中嵌入了一个lru链表节点,通常是把page数据结构挂入LRU链表。

<include/linux/mm_types.h>struct page {...struct list_head lru;...
}

链表头的初始化有两种方法,一种是静态初始化,另一种动态初始化。

把next和prev指针都初始化并指向自己,这样便初始化了一个带头节点的空链表。

<include/linux/list.h>/*静态初始化*/
#define LIST_HEAD_INIT(name) { &(name), &(name) }#define LIST_HEAD(name) \struct list_head name = LIST_HEAD_INIT(name)/*动态初始化*/
static inline void INIT_LIST_HEAD(struct list_head *list)
{list->next = list;list->prev = list;
}

添加节点到一个链表中,内核提供了几个接口函数,如list_add()是把一个节点添加到表头,list_add_tail()是插入表尾。

<include/linux/list.h>void list_add(struct list_head *new, struct list_head *head)
list_add_tail(struct list_head *new, struct list_head *head)

遍历节点的接口函数。

#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)

这个宏只是遍历一个一个节点的当前位置,那么如何获取节点本身的数据结构呢?这里还需要使用list_entry()宏。

#define list_entry(ptr, type, member) \container_of(ptr, type, member)
//container_of()宏的定义在kernel.h头文件中。
#define container_of(ptr, type, member) ({            \const typeof( ((type *)0)->member ) *__mptr = (ptr);    \(type *)( (char *)__mptr - offsetof(type,member) );})#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

其中offsetof()宏是通过把0地址转换为type类型的指针,然后去获取该结构体中member成员的指针,也就是获取了member在type结构体中的偏移量。最后用指针ptr减去offset,就得到type结构体的真实地址了。对linux内核中container_of()宏的理解 

下面是遍历链表的一个例子。

<drivers/block/osdblk.c>static ssize_t class_osdblk_list(struct class *c,struct class_attribute *attr,char *data)
{int n = 0;struct list_head *tmp;list_for_each(tmp, &osdblkdev_list) {struct osdblk_device *osdev;osdev = list_entry(tmp, struct osdblk_device, node);n += sprintf(data+n, "%d %d %llu %llu %s\n",osdev->id,osdev->major,osdev->obj.partition,osdev->obj.id,osdev->osd_path);}return n;
}

红黑树

红黑树(Red Black Tree)被广泛应用在内核的内存管理和进程调度中,用于将排序的元素组织到树中。红黑树被广泛应用在计算机科学的各个领域中,它在速度和实现复杂度之间提供一个很好的平衡。

红黑树是具有以下特征的二叉树:

  • 每个节点或红或黑。

  • 每个叶节点是黑色的。

  • 如果结点都是红色,那么两个子结点都是黑色。

  • 从一个内部结点到叶结点的简单路径上,对所有叶节点来说,黑色结点的数目都是相同的。

红黑树的一个优点是,所有重要的操作(例如插入、删除、搜索)都可以在O(log n)时间内完成,n为树中元素的数目。

经典的算法教科书都会讲解红黑树的实现,这里只是列出一个内核中使用红黑树的例子,供读者在实际的驱动和内核编程中参考。这个例子可以在内核代码的documentation/Rbtree.txt文件中找到。

#include <linux/init.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/rbtree.h>MODULE_AUTHOR("figo.zhang");
MODULE_DESCRIPTION(" ");
MODULE_LICENSE("GPL");struct mytype { struct rb_node node;int key; 
};/*红黑树根节点*/struct rb_root mytree = RB_ROOT;
/*根据key来查找节点*/
struct mytype *my_search(struct rb_root *root, int new){struct rb_node *node = root->rb_node;while (node) {struct mytype *data = container_of(node, struct mytype, node);if (data->key > new)node = node->rb_left;else if (data->key < new)node = node->rb_right;elsereturn data;}return NULL;}/*插入一个元素到红黑树中*/int my_insert(struct rb_root *root, struct mytype *data){struct rb_node **new = &(root->rb_node), *parent=NULL;/* 寻找可以添加新节点的地方 */while (*new) {struct mytype *this = container_of(*new, struct mytype, node);parent = *new;if (this->key > data->key)new = &((*new)->rb_left);else if (this->key < data->key) {new = &((*new)->rb_right);} elsereturn -1;}/* 添加一个新节点 */rb_link_node(&data->node, parent, new);rb_insert_color(&data->node, root);return 0;}static int __init my_init(void)
{int i;struct mytype *data;struct rb_node *node;/*插入元素*/for (i =0; i < 20; i+=2) {data = kmalloc(sizeof(struct mytype), GFP_KERNEL);data->key = i;my_insert(&mytree, data);}/*遍历红黑树,打印所有节点的key值*/for (node = rb_first(&mytree); node; node = rb_next(node)) printk("key=%d\n", rb_entry(node, struct mytype, node)->key);return 0;
}static void __exit my_exit(void)
{struct mytype *data;struct rb_node *node;for (node = rb_first(&mytree); node; node = rb_next(node)) {data = rb_entry(node, struct mytype, node);if (data) {rb_erase(&data->node, &mytree);kfree(data);}}
}
module_init(my_init);
module_exit(my_exit);

mytree是红黑树的根节点,my_insert()实现插入一个元素到红黑树中,my_search()根据key来查找节点。内核大量使用红黑树,如虚拟地址空间VMA的管理。

无锁环形缓冲区

生产者和消费者模型是计算机编程中最常见的一种模型。生产者产生数据,而消费者消耗数据,如一个网络设备,硬件设备接收网络包,然后应用程序读取网络包。

环形缓冲区是实现生产者和消费者模型的经典算法。环形缓冲区通常有一个读指针和一个写指针。读指针指向环形缓冲区中可读的数据,写指针指向环形缓冲区可写的数据。通过移动读指针和写指针实现缓冲区数据的读取和写入。

在Linux内核中,KFIFO是采用无锁环形缓冲区的实现。FIFO的全称是“First In First Out”,即先进先出的数据结构,它采用环形缓冲区的方法来实现,并提供一个无边界的字节流服务。

采用环形缓冲区的好处是,当一个数据元素被消耗之后,其余数据元素不需要移动其存储位置,从而减少复制,提高效率

(1)创建KFIFO

在使用KFIFO之前需要进行初始化,这里有静态初始化和动态初始化两种方式。

<include/linux/kfifo.h>int kfifo_alloc(fifo, size, gfp_mask)

该函数创建并分配一个大小为size的KFIFO环形缓冲区。第一个参数fifo是指向该环形缓冲区的struct kfifo数据结构;第二个参数size是指定缓冲区元素的数量;第三个参数gfp_mask表示分配KFIFO元素使用的分配掩码。

静态分配可以使用如下的宏。

#define DEFINE_KFIFO(fifo, type, size)
#define INIT_KFIFO(fifo)

(2)入列

把数据写入KFIFO环形缓冲区可以使用kfifo_in()函数接口。

int kfifo_in(fifo, buf, n)

该函数把buf指针指向的n个数据复制到KFIFO环形缓冲区中。第一个参数fifo指的是KFIFO环形缓冲区;第二个参数buf指向要复制的数据的buffer;第三个数据是要复制数据元素的数量。

(3)出列

从KFIFO环形缓冲区中列出或者摘取数据可以使用kfifo_out()函数接口。

#define    kfifo_out(fifo, buf, n)

该函数是从fifo指向的环形缓冲区中复制n个数据元素到buf指向的缓冲区中。如果KFIFO环形缓冲区的数据元素小于n个,那么复制出去的数据元素小于n个。

(4)获取缓冲区大小

KFIFO提供了几个接口函数来查询环形缓冲区的状态。

#define kfifo_size(fifo)
#define kfifo_len(fifo)
#define kfifo_is_empty(fifo)
#define kfifo_is_full(fifo)

kfifo_size()用来获取环形缓冲区的大小,也就是最大可以容纳多少个数据元素。kfifo_len()用来获取当前环形缓冲区中有多少个有效数据元素。kfifo_is_empty()判断环形缓冲区是否为空。kfifo_is_full()判断环形缓冲区是否为满。

(5)与用户空间数据交互

KFIFO还封装了两个函数与用户空间数据交互。

#define    kfifo_from_user(fifo, from, len, copied)
#define    kfifo_to_user(fifo, to, len, copied)

kfifo_from_user()是把from指向的用户空间的len个数据元素复制到KFIFO中,最后一个参数copied表示成功复制了几个数据元素。

kfifo_to_user()则相反,把KFIFO的数据元素复制到用户空间。这两个宏结合了copy_to_user()copy_from_user()以及KFIFO的机制,给驱动开发者提供了方便。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/9544.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

eBPF内核技术在滴滴云原生的落地实践

将滴滴技术设为“星标⭐️” 第一时间收到文章更新 导读 eBPF是Linux内核革命性技术&#xff0c;能够安全高效地扩展内核能力&#xff0c;应用广泛&#xff0c;尤其是在云原生可观测性领域的应用已经成为行业热点。在滴滴云原生环境中&#xff0c;eBPF技术进行了业务实践和内源…

CesiumJS使用详细,在vue中使用Cesium.js(WebGIS中的Cesium地图可视化应用)

简述&#xff1a;Cesium是一种基于WebGL开源的虚拟地球技术&#xff0c;可以用于构建高性能、跨平台的三维地球应用程序&#xff0c;它支持多种数据格式和地图服务&#xff0c;可以实现地球表面的高精度渲染、地形分析、数据可视化等功能。Cesium还提供了丰富的API和插件&#…

青岛大学_王卓老师【数据结构与算法】Week04_05_双向链表的删除_学习笔记

本文是个人学习笔记&#xff0c;素材来自青岛大学王卓老师的教学视频。 一方面用于学习记录与分享&#xff0c;另一方面是想让更多的人看到这么好的《数据结构与算法》的学习视频。 如有侵权&#xff0c;请留言作删文处理。 课程视频链接&#xff1a; 数据结构与算法基础–…

2023年03月份青少年软件编程Python等级考试试卷三级真题(含答案)

2023-03 Python三级真题 分数&#xff1a;100 题数&#xff1a;38 测试时长&#xff1a;60min 一、单选题(共25题&#xff0c;共50分) 1.十进制数111转换成二进制数是&#xff1f;&#xff08; &#xff09;&#xff08;2分&#xff09; A.111 B.1111011 C.101111 D…

flask_测试数据平台

实现功能&#xff1a;Flask框架平台访问批量自动造测试数据 import osfrom flask import Flask, render_template, request, jsonify, url_for, redirect from werkzeug.urls import url_parsefrom HuiCai import InsertHuiCaiOrderapp Flask(__name__, template_folderE:/fl…

23西安电子科技大学通信工程学院811考研录取情况

01、通信工程学院各个方向 02、23通信工程学院一志愿考研录取情况总览、平均分 PS&#xff1a;通院23年院线相对于22年院线上涨5-15分&#xff0c;个别专业下降10分反应西电通院热度23年和22年基本一致。 PS&#xff1a;1、通院23年比较多的考生在本部学硕、专硕扎堆&#xff…

插值应用案例1

案例1 一阶线性插值 待加工零件外形根据工艺要求在一组数据(x,y)给定&#xff08;如下表&#xff09;&#xff0c;用程控铣床加工时每一刀只能沿着x方向或y方向走非常小的一步&#xff0c;需要从已知数据得到加工步长很小的(x,y)的坐标。 下表中所给x,y数据位于机翼断面的下…

Addressable 资源管理全解二

接着上一篇文章我们继续讲… 下面是目录 &#xff1a; 一、使用Label为资源分包二、批量加载 Label 下的所有资源三、Content Update Restriction 内容更新方式1.Can Change Post Release(动态资源)2.Cannot Change Post Release(静态资源) 四、Advanced Options 下内容讲解 一…

回归预测 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络的数据多输入单输出回归预测

回归预测 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络的数据多输入单输出回归预测 目录 回归预测 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络的数据多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 回归预测 | MATLAB实现WOA-CNN鲸鱼算法优化卷积…

订单点击付款支付接口的实现(支付宝付款的实现)

订单点击付款支付接口的实现 前言一、DefaultAlipayClient是什么&#xff1f;二、支付宝付款代码的实现 前言 该付款功能只支持支付宝付款&#xff1a; 工作过程中遇到了一个我的订单中展示出来详细的订单信息&#xff0c;然后在待付款的订单信息里面实现付款的接口的问题&am…

k8s Label 2

在 k8s 中&#xff0c;我们会轻轻松松的部署几十上百个微服务&#xff0c;这些微服务的版本&#xff0c;副本数的不同进而会带出更多的 pod 这么多的 pod &#xff0c;如何才能高效的将他们组织起来的&#xff0c;如果组织不好便会让管理微服务变得混乱不堪&#xff0c;杂乱无…

中文模型的奋起直追:MOSS、baichuan-7B和ChatGLM2-6B的部署与微调

第一部分 复旦MOSS MOSS是复旦大学邱锡鹏团队推出的一个支持中英双语和多种插件的开源对话语言模型&#xff0c;moss-moon系列模型具有160亿参数&#xff0c;在FP16精度下可在单张A100/A800或两张3090显卡运行&#xff0c;在INT4/8精度下可在单张3090显卡运行。MOSS基座语言模…