【数学建模竞赛】数据预处理知识总结1——数据清洗

数据预处理是什么

在数学建模赛题中,官方给所有参赛选手的数据可能受到主观或客观条件的影响有一定的问题,如果不进行数据的处理而直接使用的话可能对最终的结果造成一定的影响,因此为了保证数据的真实性和建模结果的可靠性,需要在建模之前对数据进行相关的预处理工作!

数据预处理是指在进行数据分析和建模之前对原始数据进行清洗、转换和整理的过程。数据预处理的目的是消除数据中的噪声、错误和不完整性,以提高数据质量和分析的准确性。常见的数据预处理步骤包括数据清理、数据集成、数据变换和数据规约。

1. 数据清理:数据清理是指处理数据中的错误、缺失值和异常值。常见的数据清理方法包括删除缺失值、用平均值或中位数填补缺失值、删除或修复异常值。

2. 数据集成:数据集成是将多个数据源的数据合并到一个统一的数据集中的过程。这涉及到解决不同数据源的模式不一致、重复数据和冲突问题。常见的数据集成方法包括合并、连接和重命名。

3. 数据变换:数据变换是将原始数据转换为适合分析和建模的形式。常见的数据变换方法包括特征缩放、特征选择和特征构造。特征缩放可以将不同尺度的特征统一到一个范围内,特征选择可以选择最相关的特征,特征构造可以通过组合、离散化等方式创建新的特征。

4. 数据规约:数据规约是通过压缩数据的表示形式来减少数据存储空间和计算成本。常见的数据规约方法包括维度规约和数值规约。维度规约可以通过主成分分析等方法将高维数据映射到低维空间,数值规约可以通过聚类、抽样等方法减少数据的数量。

总结起来,数据预处理是对原始数据进行清洗、转换和整理的过程,包括数据清理、数据集成、数据变换和数据规约。这些步骤可以提高数据质量、准确性和可用性,为后续的数据分析和建模提供可靠的基础。

 

数据预处理——数据清洗

缺失值处理

处理缺失值的方法有多种,具体取决于数据集的特点和模型的需求。以下是几种常见的缺失值处理方法:

  1. 删除缺失值:对于缺失值较少的情况,可以选择直接删除包含缺失值的行或列。这样做会丢失一些有用的数据,但可以提高建模的效率。

  2. 均值插补:对于数值型的特征,可以使用该特征在其他样本中的平均值来填补缺失值。这种方法适用于缺失值较少且样本之间的差异不大的情况。

  3. 试错法:通过观察数据集中其他相关特征的取值,可以推断出缺失值的可能取值范围,并进行填充。这种方法需要根据实际情况具体分析,可以根据结果进行调整和修正。

需要注意的是,选择合适的缺失值处理方法需要根据具体情况进行决策。在处理缺失值时,我们可以根据数据集的特点和模型的要求,选择最适合的方法来处理缺失值。

拉格朗日插值法 

拉格朗日插值法是一种多项式插值方法,其目的是通过已知的若干个数据点来构建一个多项式函数,使得该函数在这些数据点上的取值与观测值完全一致。这个多项式称为拉格朗日插值多项式。拉格朗日插值法最早由法国数学家约瑟夫·路易斯·拉格朗日命名,并在18世纪后期被莱昂哈德·欧拉和拉格朗日本人发现和发展。

拉格朗日插值法的基本思想是,在已知的n个数据点上构造n次多项式,使得该多项式通过这些数据点。具体地说,拉格朗日插值多项式通过以下方法得到:首先,对于每个数据点(xi, yi),构造一个基本多项式Li(x),该多项式满足在xi处取值为1,而在其他数据点处取值为0。然后,将这些基本多项式与对应的观测值yi相乘,并将它们相加得到最终的拉格朗日插值多项式。

拉格朗日插值法的优点是简单易懂,容易实现。它可以用于估计在数据点之间的未知函数值,并且可以通过增加更多的数据点来提高估计的准确性。然而,拉格朗日插值法也存在一些问题,例如在极端情况下(例如数据点相距很远),插值多项式的取值可能会发生突变,导致插值结果不准确。

 样条函数

样条函数是一种分段多项式函数,用于拟合一系列数据点并保证穿过所有点,并且在点之间实现平滑过渡。它是由相邻数据点决定的多项式组成的,这些多项式在连接点处连续,并且可以通过改变函数的形式来适应不同的数据点分布。样条函数的优点是可以提供比多项式拟合更好的拟合效果,并且在插值过程中可以实现平滑曲线的生成。 

插值方法适用场景 

 Matlab插值

异常值处理

异常值处理是数据分析和机器学习中的一项重要任务。当出现异常值时,我们可以采取多种方法进行处理。

一种常见的处理方法是直接删除异常值。这意味着我们将从数据集中完全移除包含异常值的数据点。这种方法简单直接,但会导致数据集的减少,可能会影响到后续分析的结果。

另一种处理异常值的方法是将其视为缺失值。这意味着我们可以用缺失值来替代异常值,然后在后续的分析过程中对缺失值进行处理。这种方法可以保留整个数据集,但需要考虑如何处理缺失值的影响。

还有一种方法是将异常值修改为平均值或中位数。这意味着我们用整个数据集的平均值或中位数来替代异常值。这种方法可以保留整个数据集,并且对后续分析的影响较小。但需要注意的是,这种处理方法可能会在某些情况下引入偏差。

另外,盖帽法可以用于处理异常值。盖帽法指的是将超过一定阈值的异常值替换为阈值,以限制异常值对整体数据分布的影响。这种方法可以在保留数据集完整性的同时,抑制异常值对分析结果的干扰。

分箱法也是一种常用的处理异常值的方法。分箱法将数据按照一定的区间范围分组,将超出某个范围的值视为异常值,并进行相应的处理。这种方法可以有效地处理异常值,并且不会丢失太多的数据。

总之,在异常值处理中,我们需要根据具体情况选择合适的方法。我们可以直接删除异常值,将其视为缺失值,修改为平均值或中位数,使用盖帽法或分箱法进行处理。每种方法都有其优缺点,需要根据实际需求来选择合适的处理方式。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/99151.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

day 47 | ● 392.判断子序列 ● 115.不同的子序列

392.判断子序列 如果用dp判断true or false无法满足,所以dp用来表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度 func isSubsequence(s string, t string) bool {dp : make([][]int, len(s) 1)for i : 0; i &…

Redis基本了解

Redis 基于内存进⾏存储,⽀持 key-value 的存储形式,底层是⽤ C 语⾔编写的。 基于 key-value 形式的数据字典,结构⾮常简单,没有数据表的概念,直接⽤键值对的形式完成数据的管理,Redis ⽀持 5 种数据类型…

8月《中国数据库行业分析报告》已发布,聚焦数据仓库、首发【全球数据仓库产业图谱】

为了帮助大家及时了解中国数据库行业发展现状、梳理当前数据库市场环境和产品生态等情况,从2022年4月起,墨天轮社区行业分析研究团队出品将持续每月为大家推出最新《中国数据库行业分析报告》,持续传播数据技术知识、努力促进技术创新与行业生…

Ceph BlueStore 和双写问题

论开源分布式存储,Ceph大名鼎鼎。用同一个存储池融合提供块存储、对象存储、集群文件系统。在国内有近年使用量迅速攀升。 大型公司内部研发云虚拟化平台,常使用开源方案Openstack或者Kubernetes,配套的为虚机或容器提供块存储的开源方案&am…

Linux centos7 bash编程(循环与条件判断)

在编程训练中,循环结构与条件判断十分重要。 根据条件为真为假确定是否执行循环。 有时,根据条件的真假结果,决定执行哪些语句,这就是分支语句。 为了训练分支语句与循环语句,我们设计一个案例: 求一组…

编译OpenWrt内核驱动

编译OpenWrt内核驱动可以参考OpenWrt内部其它驱动的编写例程,来修改成自己需要的驱动 一、OpenWrt源代码获取与编译 1.1、搭建环境 下载OpenWrt的官方源码: git clone https://github.com/openwrt/openwrt.git1.2、安装编译依赖项 sudo apt update -…

计算机视觉主要任务

计算机视觉:使用计算机及相关设备对生物视觉的一种模拟。 主要包含6大任务,图像分类,目标检测,目标跟踪,语义分割,实例分割,影像重构。 图像分类:根据图像信息中所反映的不同特征&am…

设计模式-6--装饰者模式(Decorator Pattern)

一、什么是装饰者模式(Decorator Pattern) 装饰者模式(Decorator Pattern)是一种结构型设计模式,它允许你在不修改现有对象的情况下,动态地将新功能附加到对象上。这种模式通过创建一个包装类,…

什么是malloxx勒索病毒,服务器中malloxx勒索病毒了怎么办?

Malloxx勒索病毒是一种新型的电脑病毒,它通过加密用户电脑中的重要文件数据来威胁用户,并以此勒索钱财。这种病毒并不是让用户的电脑瘫痪,而是以非常独特的方式进行攻击。在感染了Malloxx勒索病毒后,它会加密用户服务器中的数据&a…

神经网络NLP基础 循环神经网络 LSTM

用的时候,只关心token的输入,以及hidden state就好了 sequence的length是多少,lstm的cell的数量就是多少 LSTM BI-LSTM stacked lstm GRU 实现

2023年7月婴幼儿辅食市场数据分析(京东商品数据)

随着人们对婴幼儿饮食健康的关注不断增加,市场对高品质、安全、营养丰富的辅食需求也日益旺盛。婴幼儿辅食市场增长放缓,但整体仍保持上升态势。鲸参谋数据显示,今年7月份,京东平台婴幼儿辅食市场的销量为1000万,同比增…

《CTFshow-Web入门》09. Web 81~90

Web 入门 索引web81题解 web82题解原理 web83题解 web84题解 web85题解 web86题解 web87题解原理 web88题解 web89题解 web90题解 ctf - web入门 索引 web81:include() 利用,一句话木马之 Nginx 日志利用。web82~86:include() 利用&#xff…