时序预测 | MATLAB实现PSO-LSSVM粒子群算法优化最小二乘支持向量机时间序列预测未来

时序预测 | MATLAB实现PSO-LSSVM粒子群算法优化最小二乘支持向量机时间序列预测未来

目录

    • 时序预测 | MATLAB实现PSO-LSSVM粒子群算法优化最小二乘支持向量机时间序列预测未来
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现PSO-LSSVM时间序列预测未来(粒子群优化最小二乘支持向量机,优化RBF核函数的gam和sig);
2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测,运行主程序PSO_LSSVMTSF即可,其余为函数文件,无需运行;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标。

模型描述

LSSVM参数优化问题没有确定或通用的共识方法。由于智能算法在预测模型参数的选取确定方面具有稳健性和通用性,预测模型参数最优化过程中主要采用了遗传算法、果蝇优化算法、萤火虫算法、粒子群算法(PSO)、网格搜索算法、神经网络等智能算法。粒子群算法不断调整自身和种群最优位置关系,具有更强寻优能力。因此,为进一步得到可靠的模型参数,可沿用粒子群算法进行尝试验证。

9

程序设计

  • 完整程序和数据下载方式私信博主回复:MATLAB实现PSO-LSSVM粒子群算法优化最小二乘支持向量机时间序列预测未来
%%  参数设置
pop = 5;              % 种群数目
Max_iter = 50;         % 迭代次数
dim = 2;               % 优化参数个数
lb = [10,   10];       % 下限
ub = [1000, 1000];       % 上限%% 优化函数
fobj = @(x)fitnessfunclssvm(x, p_train, t_train);%% 优化
[Best_pos, Best_score, curve] = PSO(pop, Max_iter, lb, ub, dim, fobj);%% LSSVM参数设置
type       = 'f';                % 模型类型 回归
kernel     = 'RBF_kernel';       % RBF 核函数
proprecess = 'preprocess';       % 是否归一化%% 建立模型
gam = Best_score(1);  
sig = Best_score(2);
model = initlssvm(p_train, t_train, type, gam, sig, kernel, proprecess);%% 训练模型
model = trainlssvm(model);%% 模型预测
t_sim1 = simlssvm(model, p_train);
t_sim2 = simlssvm(model, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 定义粒子群算法参数
% N 种群 T 迭代次数 
%% 随机初始化种群
D=dim;                   %粒子维数
c1=1.5;                 %学习因子1
c2=1.5;                 %学习因子2
w=0.8;                  %惯性权重Xmax=ub;                %位置最大值
Xmin=lb;               %位置最小值
Vmax=ub;                %速度最大值
Vmin=lb;               %速度最小值
%%
%%%%%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%%%%%x=rand(N,D).*(Xmax-Xmin)+Xmin;
v=rand(N,D).*(Vmax-Vmin)+Vmin;
%%%%%%%%%%%%%%%%%%初始化个体最优位置和最优值%%%%%%%%%%%%%%%%%%%
p=x;
pbest=ones(N,1);
for i=1:Npbest(i)=fobj(x(i,:)); 
end
%%%%%%%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%%%%%%%
g=ones(1,D);
gbest=inf;
for i=1:Nif(pbest(i)<gbest)g=p(i,:);gbest=pbest(i);end
end
%%%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%%%%%%
for i=1:Tifor j=1:N%%%%%%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%%%%%if (fobj(x(j,:))) <pbest(j)p(j,:)=x(j,:);pbest(j)=fobj(x(j,:)); end%%%%%%%%%%%%%%%%更新全局最优位置和最优值%%%%%%%%%%%%%%%if(pbest(j)<gbest)g=p(j,:);gbest=pbest(j);end%%%%%%%%%%%%%%%%%跟新位置和速度值%%%%%%%%%%%%%%%%%%%%%v(j,:)=w*v(j,:)+c1*rand*(p(j,:)-x(j,:))...+c2*rand*(g-x(j,:));x(j,:)=x(j,:)+v(j,:);%%%%%%%%%%%%%%%%%%%%边界条件处理%%%%%%%%%%%%%%%%%%%%%%if length(Vmax)==1for ii=1:Dif (v(j,ii)>Vmax)  |  (v(j,ii)< Vmin)v(j,ii)=rand * (Vmax-Vmin)+Vmin;endif (x(j,ii)>Xmax)  |  (x(j,ii)< Xmin)x(j,ii)=rand * (Xmax-Xmin)+Xmin;endend           elsefor ii=1:Dif (v(j,ii)>Vmax(ii))  |  (v(j,ii)< Vmin(ii))v(j,ii)=rand * (Vmax(ii)-Vmin(ii))+Vmin(ii);endif (x(j,ii)>Xmax(ii))  |  (x(j,ii)< Xmin(ii))x(j,ii)=rand * (Xmax(ii)-Xmin(ii))+Xmin(ii);endendendend%%%%%%%%%%%%%%%%%%%%记录历代全局最优值%%%%%%%%%%%%%%%%%%%%%Convergence_curve(i)=gbest;%记录训练集的适应度值

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/99214.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自然语言处理实战项目17-基于多种NLP模型的诈骗电话识别方法研究与应用实战

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下自然语言处理实战项目17-基于NLP模型的诈骗电话识别方法研究与应用&#xff0c;相信最近小伙伴都都看过《孤注一掷》这部写实的诈骗电影吧&#xff0c;电影主要围绕跨境网络诈骗展开&#xff0c;电影取材自上万起真…

scala基础

scala 基础 1. scala简介 scala是运行在 JVM 上的多范式编程语言&#xff0c;同时支持面向对象和面向函数编程早期scala刚出现的时候&#xff0c;并没有怎么引起重视&#xff0c;随着Spark和Kafka这样基于scala的大数据框架的兴起&#xff0c;scala逐步进入大数据开发者的眼帘…

Modbus通信协议

Modbus通信协议 一、概述 Modbus通信协议是一种工业现场总线协议标准&#xff0c;常用的Modbus协议有以下三种类型&#xff1a;Modbus TCP、Modbus RTU、Modbus ASCll。 Modbus通信协议解决了通过串行线路在电子设备之间发送信息的问题。该协议在遵循该协议的体系结构中实现主…

Jupyter Notebook 好用在哪?

Jupyter Notebook 是一个 Web 应用程序&#xff0c;便于创建和共享文学化程序文档&#xff0c;支持实时代码、数学方程、可视化和 Markdown&#xff0c;其用途包括数据清理和转换、数值模拟、统计建模、机器学习等等。目前&#xff0c;数据挖掘领域中最热门的比赛 Kaggle 里的资…

总结/笔记-vue中的插槽(默认插槽、具名插槽、作用域插槽)

问题&#xff1a; 遇到了一个插槽&#xff0c;写法为 #default ”{ row }“ 插槽知识点&#xff1a; 定义 插槽&#xff0c;用于 在组件中 引用外部组件或自定义组件的内容。 即 子组件中提供给父组件使用的一个占位符&#xff0c;父组件可以在这个占位符中填充任何模板代…

Java8实战-总结18

Java8实战-总结18 使用流筛选和切片用谓词筛选筛选各异的元素截短流跳过元素 使用流 流让你从外部迭代转向内部迭代。这样&#xff0c;就用不着写下面这样的代码来显式地管理数据集合的迭代(外部迭代)了&#xff1a; List<Dish> vegetarianDishes new ArrayList<>…

ToBeWritten之威胁狩猎

也许每个人出生的时候都以为这世界都是为他一个人而存在的&#xff0c;当他发现自己错的时候&#xff0c;他便开始长大 少走了弯路&#xff0c;也就错过了风景&#xff0c;无论如何&#xff0c;感谢经历 转移发布平台通知&#xff1a;将不再在CSDN博客发布新文章&#xff0c;敬…

OpenCV(十四):ROI区域截取

在OpenCV中&#xff0c;你可以使用Rect对象或cv::Range来截取图像的感兴趣区域&#xff08;Region of Interest&#xff0c;ROI&#xff09;。 方法一&#xff1a;使用Rect对象截取图像 Rect_(_Tp _x&#xff0c; _Tp _y&#xff0c; _Tp _width,_Tp _height) Tp:数据类型&…

聚观早报|多邻国推出进阶英文课程;电动汽车成本将高于燃油车

【聚观365】9月5日消息 多邻国即将推出进阶英文课程 未来电动汽车成本仍将高于燃油车 戴尔科技2024财年第二季度营收229亿美元 现代汽车电动汽车销量在8月份环比继续下滑 马斯克称将用X数据训练AI 多邻国即将推出进阶英文课程 语言学习平台多邻国宣布&#xff0c;为了满…

linux入门---动静态库的加载

目录标题 为什么会有动态库和静态库静态库的实现动态库的实现动静态库的加载 为什么会有动态库和静态库 我们来模拟一个场景&#xff0c;首先创建两个头文件 根据文件名便可以得知add.h头文件中存放的是加法函数的声明&#xff0c;sub.h头文件中存放的是减法函数的声明&#…

postman json复杂数据的模拟

先设置路径 然后可以定义下边数据&#xff08;Key value&#xff09; 也可以不定义 看你的情况 [{"mac": "4C-77-66-19-50-65","addressPattern": "98jd","platform": "ios","registrationId": "…

java 浅谈ThreadLocal底层源码(通俗易懂)

目录 一、ThreadLocal类基本介绍 1.概述 : 2.作用及特定 : 二、ThreadLocal类源码解读 1.代码准备 : 1.1 图示 1.2 数据对象 1.3 测试类 1.4 运行测试 2.源码分析 : 2.1 set方法解读 2.2 get方法解读 一、ThreadLocal类基本介绍 1.概述 : (1) ThreadLocal&#xff0c;本…