数学建模--Topsis评价方法的Python实现

目录

1.算法流程简介

2.算法核心代码

3.算法效果展示

1.算法流程简介

"""
TOPSIS(综合评价方法):主要是根据根据各测评对象与理想目标的接近程度进行排序.
然后在现有研究对象中进行相对优劣评价。
其基本原理就是求解计算各评价对象与最优解和最劣解的距离来进行排序.
如果过评价对象最靠近最优解同时又最远离最劣解,则为最优;否则不是最优。
这样的评价方法需要多次统一标准,所以要求我们掌握正向化的求解方法.
"""

2.算法核心代码

"""
Question1:现给予你20组有关水质特征的值,分别是含氧量  PH值  细菌总数  植物性营养物量四个参数,请你根据
Topsis方法将20条河流的水质进行对应的评价!
"""
#Topsis综合评价法
import numpy as np
import matplotlib.pyplot as plt
"""
输入评价数据
20个评价数据包含了含氧量  PH值  细菌总数  植物性营养物量四个参数"""
data=np.array([[4.69, 6.59, 51, 11.94],[2.03, 7.86, 19, 6.46],[9.11, 6.31, 46, 8.91],[8.61, 7.05, 46, 26.43],[7.13, 6.5, 50, 23.57],[2.39, 6.77, 38, 24.62],[7.69, 6.79, 38, 6.01],[9.3, 6.81, 27, 31.57],[5.45, 7.62, 5, 18.46],[6.19, 7.27, 17, 7.51],[7.93, 7.53, 9, 6.52],[4.4, 7.28, 17, 25.3],[7.46, 8.24, 23, 14.42],[2.01, 5.55, 47, 26.31],[2.04, 6.4, 23, 17.91],[7.73, 6.14, 52, 15.72],[6.35, 7.58, 25, 29.46],[8.29, 8.41, 39, 12.02],[3.54, 7.27, 54, 3.16],[7.44, 6.26, 8, 28.41]])
#区分指标的性质并且进行正向化处理
"""
一般来说,数据指标分为4种形式:
1.极大值型:越大越好,比如利润
2.极小值型:越小越好,比如死亡数
3.中间值型:越趋近于某一个数越好,比如PH
4.区间值型:越趋近于某一个区间越好
##常见的转化公式
极大值型:x-x_min
极小值型:x_max-x
区间值型:在区间中为1,大于区间:1-(x-r)/M 小于区间:1-(l-x)/M
"""
# 定义position接收需要进行正向化处理的列
position = np.array([1, 2, 3])
# 定义处理类型:1 - > 极小型  2 - > 中间型  3 - > 区间型
Type = np.array([2, 1, 3])
# 定义正向化函数
def positivization(x:np.array,pos:int,type:int)->np.array:if type==1:#极小型值x=x.max()-xelif type==2:best=7#此处可以修改M=np.max(np.abs(x-best))x=1-np.abs(x-best)/Melse:#区间值型:在区间中为1,大于区间:1-(x-r)/M 小于区间:1-(l-x)/Ml=10#区间左端r=20#区间右端M0=max(l-x.min(),x.max()-r)x=np.where(x<l,1-(l-x)/M0,x)x=np.where(x>r,1-(x-r)/M0,x)x=np.where(x>l,1,x)return x
for i in range(len(position)):data[:, position[i]] = positivization(data[:, position[i]], position[i], Type[i])
#矩阵标准化求解
"""
已经正向化后,我们就能够进行矩阵的标准化求解了
把标准化的矩阵记作Z,对于每一个z(i,j)都有:
z(i,j)=x(i,j)/sqrt(sum(x(i,j)*x(i,j)))
"""
Z = data / np.sum(data * data, axis=0) ** 0.5
"""
计算得分并且归一化
"""
max_grd=np.max(Z)
min_grd=np.min(Z)
max_dist = np.sum((max_grd - Z) * (max_grd - Z), axis=1) ** 0.5
min_dist = np.sum((min_grd - Z) * (min_grd - Z), axis=1) ** 0.5
#最终得分
final_score = (min_dist / (max_dist + min_dist))
#归一化处理并且保留精度
final_score /= np.sum(final_score)
final_score = np.around(final_score, decimals=3) 
print("评级结果为一分制")
print("**********************************************************************")
for i in range(len(final_score)):print("第{}条河流的Topsis评价得分为:".format(i+1),final_score[i])
print("**********************************************************************")
#绘制可视化图片
number=20#根据数据的个数进行修改即可
x = np.arange(number) 
colors=['red','black','peru','orchid','deepskyblue', 'orange', 'green', 'pink', 'rosybrown', 'gold', 'lightsteelblue', 'teal']
x_label = [chr(i) for i in range(65,65+number)]#表示成A,B,C,......Z
#绘制可视化图
plt.figure(figsize=(12, 8))
plt.xticks(x, x_label) 
#绘制条形统计图
plt.bar(x, final_score,color=colors) 
#设置网格刻度
plt.grid(True,linestyle=':',color='b',alpha=0.6)
plt.title("TOPSIS's Score Figure")
#在柱状图上绘制数据
for xx, yy in zip(x, final_score):plt.text(xx, yy + 0.001, str(yy), ha='center')
plt.savefig('C:\\Users\\Zeng Zhong Yan\\Desktop\\TOPSIS Score Figure.png', dpi=500, bbox_inches='tight')
plt.show()

3.算法效果展示

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/99767.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# 子类如何访问子类的方法(同一父类)

在继承关系中&#xff0c;子类可以通过创建另一个子类的对象来访问其方法。下面是一个示例&#xff0c;展示了子类如何访问另一个子类的方法&#xff1a; public class Animal {public virtual void Speak(){Console.WriteLine("我是动物。");} }public class Cat :…

Mac电脑其他文件占用超过一大半的内存如何清理?

mac的存储空间时不时会提示内存已满&#xff0c;查看内存占用比例最大的居然是「其他文件」&#xff0c;「其他文件」是Mac无法识别的格式文件或应用插件扩展等等...如果你想要给Mac做一次彻底的磁盘空间清理&#xff0c;首当其冲可先对「其他文件」下手&#xff0c;那么我们该…

网络安全—0基础入门学习手册

前言 一、什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域&#xff0c;都有攻与防…

爬虫到底难在哪里?

目录 爬虫到底难在哪里 怎么学习爬虫 注意事项 爬虫工具 总结 学习Python爬虫的难易程度因人而异&#xff0c;对于具备编程基础的人来说&#xff0c;学习Python爬虫并不困难。Python语言本身比较简单易学&#xff0c;适合初学者使用。 爬虫到底难在哪里 爬虫的难点主要包…

计算机竞赛 基于深度学习的人脸性别年龄识别 - 图像识别 opencv

文章目录 0 前言1 课题描述2 实现效果3 算法实现原理3.1 数据集3.2 深度学习识别算法3.3 特征提取主干网络3.4 总体实现流程 4 具体实现4.1 预训练数据格式4.2 部分实现代码 5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 毕业设计…

Java版工程行业管理系统源码-专业的工程管理软件- 工程项目各模块及其功能点清单

Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下&#xff1a; 首页 工作台&#xff1a;待办工作、消息通知、预警信息&#xff0c;点击可进入相应的列表 项目进度图表&#xff1a;选择&#xff08;总体或单个&#xff09;项目显示…

Si24R2F+畜牧 耳标测体温开发资料

Si24R2F是针对IOT应用领域推出的新款超低功耗2.4G内置NVM单发射芯片。广泛应用于2.4G有源活体动物耳标&#xff0c;带实时测温计步功能。相较于Si24R2E&#xff0c;Si24R2F增加了温度监控、自动唤醒间隔功能&#xff1b;发射功率由7dBm增加到12dBm&#xff0c;距离更远&#xf…

2024腾讯校招后端面试真题汇总及其解答(三)

21【算法题】反转链表 题目: 给定单链表的头节点 head ,请反转链表,并返回反转后的链表的头节点。 示例 1: 输入:head = [1,2,3,4,5] 输出:[5,4,3,2,1]示例 2: 输入:head = [1,2] 输出:[2,1]示例 3: 输入:head = [] 输出:[]提示: 链表中节点的数目范围是 [0, 5…

通过nginx将https协议反向代理到http协议请求上

通过nginx将https协议反向代理到http协议请求上 1、问题背景2、介绍nginx的反向代理功能及配置https协议3、具体实现3.1 后端服务支持方式3.2 nginx重定向方式 3.3、nginx的反向代理方式4、关于nginx常用模块和指令 1、问题背景 目前一个系统仅支持https协议访问&#xff0c;因…

ElasticSearch详解

目录 一、Elasticsearch是什么&#xff1f; 二、为什么要使用ElasticSearch 2.1 关系型数据库有什么问题&#xff1f; 2.2 ElasticSearch有什么优势&#xff1f; 2.3 ES使用场景 三、ElasticSearch概念、原理与实现 3.1 搜索引擎原理 3.2 Lucene 倒排索引核心原理 倒排…

Mysql高阶语句(二)

一、设置别名&#xff08;alias ——>as&#xff09; 在 MySQL 查询时&#xff0c;当表的名字比较长或者表内某些字段比较长时&#xff0c;为了方便书写或者 多次使用相同的表&#xff0c;可以给字段列或表设置别名。使用的时候直接使用别名&#xff0c;简洁明了&#xff0…

Python爬虫乱码问题之encoding和apparent_encoding的区别

encoding是从http中的header中的charset字段中提取的编码方式&#xff0c;若header中没有charset字段则默认为ISO-8859-1编码模式&#xff0c;则无法解析中文&#xff0c;这是乱码的原因 apparent_encoding会从网页的内容中分析网页编码的方式&#xff0c;所以apparent_encodi…