数据结构与算法之贪心动态规划

        一:思考

        1.某天早上公司领导找你解决一个问题,明天公司有N个同等级的会议需要使用同一个会议室,现在给你这个N个会议的开始和结束 时间,你怎么样安排才能使会议室最大利用?即安排最多场次的会议?电影的话 那肯定是最多加票价最高的,入场率。综合算法

        2.双十一马上就要来了,小C心目中的女神在购物车加了N个东西,突然她中了一个奖可以清空购物车5000元的东西(不能找零),每个东西只能买一件,那么她应该如何选择物品使之中奖的额度能最大利用呢?如果存在多种最优组合你只需要给出一种即可,嘿嘿 现在女神来问你,你该怎么办?(动态规划)

        二: 贪心算法

        概念:贪心算法又叫做贪婪算法,它在求解某个问题是,总是做出眼前最大利益。 也就是说只顾眼前不顾大局,所以它是局部最优解。核心点:通过局部最优推出全局最优

        举例:

        1.某天早上公司领导找你解决一个问题,明天公司有N个同等级的会议需要使用同一个会议室,现在给你这个N个会议的开始和结束时间,你怎么样安排才能使会议室最大利用?即安排最多场次的会议?

         现在我们怎么去贪?也就这个我们选择的贪心策略:、

         1.1 选时间最短:1-3,2~4,3~5,4~6

        1.2 按结束时间从小到大排序:首先把第一个加入我们可以开会的列表。之后只要开始时间是大于我们上一个的结束时间的就可以开 (代码如下)

package tx;import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;/*** 贪心算法:1.某天早上公司领导找你解决一个问题,明天公司有N个同等级的会议需要使用同一个会议室,* 	现在给你这个N个会议的开始和结束时间,你怎么样安排才能使会议室最大利用?即安排最多场次的会议?** 	策略:按结束时间从小到大排序:首先把第一个加入我们可以开会的列表。之后只要开始时间是大于我们上一个的结束时间的就可以开* 	核心:排序*/
class Metting implements Comparable<Metting> {int meNum; // 编号int startTime; // 开始时间int endTime; // 结束时间public Metting(int meNum, int startTime, int endTime) {super();this.meNum = meNum;this.startTime = startTime;this.endTime = endTime;}public int compareTo(Metting o) {if (this.endTime > o.endTime)return 1;return -1;}@Overridepublic String toString() {return "Metting [meNum=" + meNum + ", startTime=" + startTime+ ", endTime=" + endTime + "]";}}public class MettingTest {public static void main(String[] args) {Scanner cin = new Scanner(System.in);List<Metting> mettings = new ArrayList<Metting>();int n = cin.nextInt();	//n个会议for (int i = 0 ;i < n; i++){int start = cin.nextInt();int end = cin.nextInt();Metting metting = new Metting(i+1, start, end);mettings.add(metting);}mettings.sort(null);int curTime = 0;		//当前的时间,从一天的0点开始,如果领导要求从8点开始 那curTime=8for(int i = 0 ; i < n; i ++){Metting metting = mettings.get(i);if(metting.startTime >= curTime){		//会议的开始时间比我们当前的要大 表示可以开System.out.println(metting.toString());curTime = metting.endTime;}}}
}

         2.1 贪心算法的核心思想

        贪心算法的套路:一定会有一个排序。哈夫曼编码,贪心算法,压缩算法。最短路径

        贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

         贪心算法其最重要的两个点就是: 贪心策略排序

通过局部最优解能够得到全局最优解

一般通过以下问题就可以通过贪心算法解决:

                1.针对某个问题有限制值,以及有一个期望的最好结果,通常是从某些数据中选出其中一些,达到最好的结果。

                2.一般会有一个排序,找出贡献最大的。

                3.举例看贪心是否可以解决。 一般用在任务调度,教师排课等系统。 实际上,用贪心算法解决问题的思路,并不总能给出最优解。

        三:动态规划

        经典问题

        背包问题 小偷去某商店盗窃,背有一个背包,容量是5kg,现在有以下物品(物品不能切分,且只有一个),请问小偷应该怎么拿才能得到最大的价值?

5kg的袋子

物品:

钱:6  10  12

Kg:1  2   4

思路:我们把5kg的袋子,拆分成1kg,1kg这样子计算,里面的表格就表示当前重量下能装的最多的钱。表格的数列就表示是要装的物品

1kg

2kg

3kg

4kg

5kg

加入物品1

6

6

6

6

6

加入物品2

6

10

10+6=16

10+6=16

16

加入物品3

6

10

16

16

18

第一个物品: 袋子只能装1kg的物品,所以价钱为6

第二个物品: 

        袋子当前为1kg 的容量时,我们发现物品2装不进去。那我们应该取多少呢?是不是只要取物品进来时1kg最大钱?

        当袋子为2kg时,我们发现物品2可以装下去,此时可以得到10块钱,之前物品1进来时2kg最大是6吧,那我们肯定要选择大的这个10,而不是6.此时袋子还剩0kg可以装。

        袋子为3kg时,我们还是可以装下这个物品2,得到10块,袋子还剩下1kg。

10+1kg能装的东西。

第三个物品:

        袋子为4kg时,物品3可以转进来,得到12块钱,袋子还剩0kg。

        我发现我不装物品3 还能得到16呢

        袋子为5kg时,物品3可以转进来,得到12块钱,袋子还剩1kg。那么装了物品3就能得到12+6=18块钱

        我发现我不装物品3 能得到16,比18小,所以决定装.。

                                (图解:将数值除以10就是上面的题)

                代码实现

package tx;public class Dp {public static void main(String[] args) {int value [] ={60,100,120};int weigth[] = {10,20,40};	//购物车那个问题 只需要一个价值就行了,重量都都没有。int w = 50;  //代表我可以装的数量int n = 3; //代表三个物品int dp[][] = new int[n+1][w+1];		//n表示是物品,w表示重量,初始化全是0for(int i = 1; i<= n; i++){	//每次加的物品for(int cw = 1 ; cw <= w ; cw ++){		//分割的背包if(weigth[i - 1] <= cw){		//表示这个物品可以装进去dp[i][cw] = Math.max(value[i-1] + dp[i-1][cw-weigth[i-1]],dp[i-1][cw]);}else{dp[i][cw] = dp[i-1][cw];	//不能装}}}System.out.println(dp[n][w]);}
}

四:动归和贪心的比较        

        贪心是只管眼前不会管后的情况,而动归不一样,它的每次递推都是基于上一次的最优解进行。所以往往动归是一定能求出最优解的,而贪心不一定,这也是贪心算法的缺点,但是大家都看到了动归的时间复杂度是O(n*m)而贪心是O(nlogn),所以贪心算法的是高效的,动归如果子问题太多的话 就容易算不出结果,而且能用动归的问题往往用贪心都能解决一部分,甚至很大一部分。因此如果在实际项目中要求不是特别严的话 我建议使用贪心算法求最优解,其实我们很多时候并不用保证100%的准确,能尽量准确就可以了,贪心恰恰是符合这个规则的。

        五:购物车代码实现

package tx;public class CardDp {public static void main(String[] args) {int weigth[] = {1,2,3,4,5,9};	//购物车那个问题 只需要一个价值就行了,重量都都没有。int w = 8;int n = 6;int dp[][] = new int[n+1][w+1];		//n表示是物品,w表示重量,初始化全是0for(int i = 1; i<= n; i++){	//每次加的物品for(int cw = 1 ; cw <= w ; cw ++){		//分割的背包if(weigth[i - 1] <= cw){		//表示这个物品可以装进去dp[i][cw] = Math.max(weigth[i-1] + dp[i-1][cw-weigth[i-1]],dp[i-1][cw]);}else{dp[i][cw] = dp[i-1][cw];	//不能装}}}System.out.println(dp[n][w]);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/99926.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

“遇见小黄鸭”+共享门店、共享股东模式

小编介绍&#xff1a;10年专注商业模式设计及软件开发&#xff0c;擅长企业生态商业模式&#xff0c;商业零售会员增长裂变模式策划、商业闭环模式设计及方案落地&#xff1b;扶持10余个电商平台做到营收过千万&#xff0c;数百个平台达到百万会员&#xff0c;欢迎咨询。 在传…

医学影像工作站PACS系统源码,医院PACS系统源码

医学影像(PACS)系统主要进行病人信息和影像的获取、处理、存储、调阅、检索、管理&#xff0c;并通过网络向全院提供病人检查影像及诊断报告&#xff1b;各影像科室之间共享不同设备的病人检查影像及诊断报告&#xff1b;在诊断工作站上&#xff0c;调阅HIS中病人的其它信息&am…

MATLAB 的 figure 用法总结

文章目录 Syntax&#xff1a;DescriptionExamples1.figure2.figure(Name,Value)Position 属性: 设置 Figure 的位置和大小Name 属性: 设置 Figure 的名称NumberTitle 属性: 取消 Figure 名称里默认的数字units 属性color 属性 3.f figure(___)4.Working with Multiple Figures…

yocto stm32mp1集成ros

yocto stm32mp1集成ros yocto集成ros下载meta-rosyocto集成rosrootfs验证 yocto集成ros 本章节介绍yocto如何集成ros系统用来作机器人开发。 下载meta-ros 第一步首先需要下载meta-ros layer&#xff0c;meta-ros的链接如下&#xff1a;https://github.com/ros/meta-ros/tre…

python in excel 如何尝鲜 有手就行

众所周知&#xff0c;微软在8月下旬放出消息python已入驻excel&#xff0c;可到底怎么实现呢。 今天我就将发布python in excel的保姆级教程&#xff0c;开始吧&#xff01; 获取office 365 账号 首先我们要有微软office365 这时候需要再万能的某宝去找一个账号&#xff0c;…

图论-01-图的基本表示-邻接矩阵和邻接表-Java

文章目录 邻接矩阵邻接表邻接表的问题和改进总结 邻接矩阵 import java.io.File; import java.io.IOException; import java.util.ArrayList; import java.util.Scanner;public class AdjMatrix {private int V;private int E;private int[][] adj;// 构造函数&#xff0c;从文…

Java 大文件排序

大文件排序 http://en.wikipedia.org/wiki/Merge_sort http://en.wikipedia.org/wiki/External_sorting 外排序 通常来说&#xff0c;外排序处理的数据不能一次装入内存&#xff0c;只能放在读写较慢的外存储器&#xff08;通常是硬盘&#xff09;上。 外排序通常采用的是…

Vue + Element UI 前端篇(一):搭建开发环境

Vue Element UI 实现权限管理系统 前端篇&#xff08;一&#xff09;&#xff1a;搭建开发环境 技术基础 开发之前&#xff0c;请先熟悉下面的4个文档 vue.js2.0中文, 优秀的JS框架vue-router, vue.js 配套路由vuex&#xff0c;vue.js 应用状态管理库Element&#xff0c;饿…

2023年09月IDE流行度最新排名

点击查看最新IDE流行度最新排名&#xff08;每月更新&#xff09; 2023年09月IDE流行度最新排名 顶级IDE排名是通过分析在谷歌上搜索IDE下载页面的频率而创建的 一个IDE被搜索的次数越多&#xff0c;这个IDE就被认为越受欢迎。原始数据来自谷歌Trends 如果您相信集体智慧&am…

AI:07-基于卷积神经网络的海洋生物的识别

当涉及海洋生物的识别和研究时,基于深度学习的方法已经展现出了巨大的潜力。深度学习模型可以利用大量的图像和标记数据来自动学习特征,并实现高准确度的分类任务。本文将介绍如何使用深度学习技术来实现海洋生物的自动识别,并提供相应的代码示例。 数据收集和预处理 要训…

python调用C语言库

1. 在linux下通过gcc生成so库 //请保存为 foo.c #include<stdio.h> #define uint8_t unsigned char #define uint16_t unsigned shorttypedef struct TagMyStruct {char name[10];uint8_t age;int score; } MyStruct,*MyStructPointer;MyStructPointer foo_get_data_…

一文讲清楚redis的线程池jedis

背景 在shigen实习的时候&#xff0c;遇到了日志系统的性能优化问题&#xff0c;当时的优化点就是&#xff1a;使用redis的线程池&#xff0c;实现并发状态下的性能优化。但是找了很多的技术方案&#xff0c;发现redis的线程池配置起来比较麻烦。正巧&#xff0c;这个周末shig…