生成式人工智能能否使数字孪生在能源和公用事业行业成为现实?

生成式人工智能能否使数字孪生在能源和公用事业行业成为现实?

推荐:使用 NSDT场景编辑器 快速搭建3D应用场景

克服障碍,优化数字孪生优势

要实现数字孪生的优势,您需要数据和逻辑集成层以及基于角色的演示。如图 1 所示,在任何资产密集型行业(如能源和公用事业)中,您必须集成各种数据集,例如:

  • OT(实时设备、传感器和物联网数据)
  • IT 系统,例如企业资产管理(例如 Maximo 或 SAP)
  • 工厂生命周期管理系统
  • ERP和各种非结构化数据集,如P&ID,视觉图像和声学数据

 

对于表示层,您可以利用各种功能,例如 3D 建模、增强现实以及各种基于预测模型的健康评分和关键性指数。在 IBM,我们坚信开放技术是数字孪生的必要基础。

在利用传统的 ML 和 AI 建模技术时,您必须对孤立的 AI 模型进行集中训练,这需要大量的人工监督训练。这是利用在孤立的流程和技术中生成和维护的历史、当前和预测数据的主要障碍。

如图 2 所示,生成式 AI 的使用通过模拟任意数量的物理上可能且同时合理的对象状态并将它们馈送到数字孪生的网络,从而提高了数字孪生的能力。

 

这些功能有助于持续确定物理对象的状态。例如,热图可以显示由于大量使用空调引起的预期热浪而导致电网瓶颈可能发生的位置(以及如何通过智能切换解决这些问题)。除了开放技术基础之外,模型必须可信并面向业务领域。

资产密集型行业中的生成式 AI 和数字孪生用例

当您在能源和公用事业等资产密集型行业中将生成式 AI 用于数字孪生技术时,各种用例就会成为现实。考虑我们行业客户的一些用例示例:

  1. 视觉洞察。通过创建各种公用事业资产类别(如塔、变压器和线路)的基础模型,并通过利用大规模视觉图像和适应客户端设置,我们可以利用神经网络架构。我们可以使用它来扩展AI的使用,以识别公用事业资产的异常和损坏,而不是手动查看图像。
  2. 资产绩效管理。我们基于时间序列数据及其与工作订单、事件预测、运行状况评分、关键性指数、用户手册和其他非结构化数据的关系创建大规模基础模型,以进行异常检测。我们使用这些模型来创建单独的资产孪生,其中包含当前和未来操作可访问的所有历史信息。
  3. 现场服务。我们利用检索增强生成任务来创建问答功能或多语言对话聊天机器人(基于来自广泛知识库的文档或动态内容),实时提供现场服务帮助。此功能可以极大地影响现场服务人员的绩效,并通过实时回答特定于资产的问题来提高能源服务的可靠性,而无需将最终用户重定向到文档、链接或人工操作员。

生成式人工智能和大型语言模型(LLM)给人工智能领域带来了新的危险,我们并不声称拥有这些新解决方案引入的所有问题的答案。IBM 深知,推动人工智能的信任和透明度不是技术挑战,而是社会技术挑战。

我们看到很大一部分人工智能项目陷入了概念验证,原因从业务战略的错位到对模型结果的不信任。IBM 汇集了丰富的转型经验、行业专业知识以及专有和合作伙伴技术。通过这种技能和合作伙伴关系的结合,IBM 咨询特别™适合帮助企业构建战略和功能,以实施和扩展可信 AI 以实现其目标。

目前,IBM是市场上为数不多的既提供人工智能解决方案又拥有咨询实践的公司之一,致力于帮助客户安全和负责任地使用人工智能。IBM 的生成式 AI 卓越中心可帮助客户实施整个 AI 生命周期,并开发符合道德规范的生成式 AI 解决方案。

利用生成式人工智能的旅程应该:a)由开放技术驱动;b)确保人工智能负责并对其进行治理,以建立对模型的信任;c) 应该授权那些使用您平台的人。我们相信,生成式人工智能可以使能源和公用事业公司实现数字孪生的承诺,因为他们为清洁能源转型而对其数字基础设施进行了现代化改造。通过与 IBM 咨询合作,您可以成为 AI 价值创造者,从而训练、部署和管理数据和 AI 模型。

原文链接:生成式人工智能能否使数字孪生在能源和公用事业行业成为现实? (mvrlink.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/102664.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL卸载干净再重新安装【Windows】

家人们,谁懂啊? 上学期学的数据库,由于上学期不知道为什么抽风,过得十分的迷,上课跟老师步骤安装好了Mysql,但后面在使用的过程中出现了问题,而且还出现了忘记密码这么蠢的操作,后半…

UNIAPP之js/nvue混淆探索

因项目需要对UNIAPP的js混淆做了一些调研 混淆教程: https://uniapp.dcloud.net.cn/tutorial/app-sec-confusion.html 按照教程配置进行打包正式包进行混淆 下载正式包将 .ipa改为.zip 解压获取到HBuilder.app 右键显示包内容 获取到混淆的key 不同时间进行打包混淆同一文…

2023-2024 人工智能专业毕设如何选题

文章目录 0 简介1 如何选题2 最新毕设选题3 最后 0 简介 学长搜集分享最新的人工智能专业毕设选题,难度适中,适合作为毕业设计,大家参考。 学长整理的题目标准: 相对容易工作量达标题目新颖 1 如何选题 最近非常多的学弟学妹问…

Unity RawImage

文章目录 1. Image2. RawImage2.1 UV Rect 3. RawImage 应用 1. Image Image 控件在我的这篇博客中有详细解释: https://blog.csdn.net/weixin_45136016/article/details/125655214 2. RawImage RawImage 组件是一个用来显示纹理的组件,常常跟Render …

65.Linux系统上库文件的生成与使用

目录 1.什么是库文件 2.静态库的生成与使用 2.1静态库的生成 2.2静态库的使用 3.共享库的生成和使用 3.1共享库的生成 3.2共享库的使用 4、静态库和共享库的区别 1.什么是库文件 库是一组预先编译好的方法的集合。Linux系统存储的库的位置一般在:/lib 和 /…

2023国赛数学建模C题模型代码

C题代码全部都完成了,可以看文末名片 我们先看C题的一个背景 在生鲜商超中,蔬菜类商品保鲜期短,且品相会随销售时间增加而变差。商超需要根据历史销售和需求每天进行补货。由于蔬菜品种众多、产地不同,补货时间在凌晨,商家须在不明确具体单品和价格的情况下进行补…

N5235B是德科技网络分析仪50GHz

181/2461/8938对无源元器件和简单的有源器件执行基本分析 适用于对成本非常敏感的应用,可以在高达 50 GHz 的频率范围内精确测量 S 参数 具有出色的性价比,可用于微波器件制造测试 可以配置经济型解决方案,用于信号完整性测量和材料表征 …

MySQL事务日志--redo, undo详解

事务有 4 种特性:原子性、一致性、隔离性和持久性。那么事务的四种特性到底是基于什么机制实现呢? 事务的隔离性由 锁机制 实现。 而事务的原子性、一致性和持久性由事务的 redo 日志和 undo 日志来保证。 REDO LOG 称为 重做日志 &#xff0c…

cadence后仿真/寄生参数提取/解决pin口提取不全的问题

post-simulation设置顺序与规则 1.Rules 设置 2.inputs设置 3.outputs设置 4.PEX 设置 会出现错误1,后有解决方案 第一步 :Netlist 第二步:LVS 5.RUN PEX 先RUN,后按照图中1 2 3步骤操作 点击OK之后,显示Calibre信息&#xff…

敏捷开发、V模型开发、瀑布模型

在软件开发领域,敏捷开发和V模型开发是两种主要的开发方法。它们之间的差异主要体现在开发过程的结构和组织方式上。在以下讨论中,我们将深入探讨这两种方法的特点和差异。 敏捷开发 敏捷开发是一种迭代和增量的软件开发方法,它强调灵活性和…

Linux修复软RAID

系统应该将mdadm配置成当发生RAID问题时给root用户发送邮件。需要更改/etc/mdadm/mdadm.xonf里的MALLADDR 并用/etc/init.d/mdadm reload重新加载下 查看/proc/mdstat文件 可以看到sdd1被标记F,说明它已经失效 从/dev/md0中移除磁盘sdd1 想要移除磁盘&#xff…

基于javaweb的网上图书销售系统(servlet+jsp)

系统简介 本项目采用eclipse工具开发,jspservletjquery技术编写,数据库采用的是mysql,navicat开发工具。 角色: 管理员普通用户 模块简介 管理员: 登录用户管理图书分类管理图书管理图书订单管理图书评论管理数据统…