无迹卡尔曼滤波在目标跟踪中的作用(一)

在前一节中,我们介绍了扩展卡尔曼滤波算法EKF在目标跟踪中的应用,其原理是

将非线性函数局部线性化,舍弃高阶泰勒项,只保留一次项

,这就不可避免地会影响结果的准确性,除此以外,实际中要计算雅各比矩阵不是特别的容易,因此有必要研究其他的滤波算法。

无迹卡尔曼滤波UKFEKF不同,UKF不对非线性函数进行线性化,而是

仍采用传统的Kalman滤波算法框架,对于其中的一步预测方程,使用无迹变换来处理参数的非线性传递问题

由于其不是对非线性函数线性化,也无需求雅各比矩阵,因此,在精度上较EKF更加优秀
好了,话不多少,直接开整!!!!

UKF原理

UKF滤波算法的关键之处就在于无迹变换,而所谓的无迹变换就是:

估计点附近确定采样点这些样本点表示的高斯密度近似状态的概率密度函数

那么UT变换(无迹变换)具体如何实现呢,下面将进行介绍。

UT变换实现方法

无迹变换通常按以下步骤进行:

  • 原状态分布中按某一规则选取一些采样点,其中要注意:这些采样点的均值和协方差要等于原状态分布的均值和协方差
  • 将这些点代入非线性函数中,将会得到非线性函数值点集
  • 通过这些点集求取变换后的均值和协方差

通过无迹变换,最终得到的非线性变换后的均值和协方差精度最少具有2阶精度(Taylor序列展开),在高斯分布的条件下,精度更是可以达到三阶精度

UT变换采样点的选择

上述提到了无迹变换需要按照一定的规则选取采样点,一般遵循以下原则:

基于先验均值先验协方差矩阵的平方根的相关列实现的

非线性变换见的对比

我们将之前学过的EKF和今天的UKF进行对比,可见下图:
在这里插入图片描述
从上述的图,我们也可以看到,经过无迹变换(UT)变换后的分布,相比于EKF更加贴近真实的分布,那么自然滤波的精度要比EKF要高一些。

UT变换的基本原理

下面我们将以对称分布采样作为例子,对于无迹变换的原理进行阐述。
此时,假设存在某非线性变换 y = f ( x ) y=f(x) y=f(x),状态向量有n维,且已知其均值 x ‾ \overline{x} x协方差P,此时就可以通过UT变换得到2n+1个Sigma点(采样点)X和相应的权值 ω \omega ω,进而计算y的统计特性:

  • 首先,计算2n+1个Sigma点,其中的n为状态量的维数
    X ( 0 ) = X ‾ , i = 0 X ( i ) = X ‾ + ( ( n + λ ) P ) i , i = 1 ∼ n X ( i ) = X ‾ − ( ( n + λ ) P ) i , i = n + 1 ∼ 2 n \begin{aligned} &X^{\left(0\right)} =\overline{X},i=0 \\ &X^{(i)} =\overline{X}+\left(\sqrt{\left(n+\lambda\right)P}\right)_{i},i=1\sim n \\ &X^{\left(i\right)}=\overline{X}-\left(\sqrt{\left(n+\lambda\right)P}\right)_{i},i=n+1\sim2n \end{aligned} X(0)=X,i=0X(i)=X+((n+λ)P )i,i=1nX(i)=X((n+λ)P )i,i=n+12n
    上式中的 ( P ) T ( P ) = P , ( P ) i 是矩阵方根的第 i 列 \left(\sqrt{P}\right)^{T}\left(\sqrt{P}\right)=P,\left(\sqrt{P}\right)_{i}是矩阵方根的第i列 (P )T(P )=P,(P )i是矩阵方根的第i
  • 然后计算这些采样点的权值
    ω m ( 0 ) = λ n + λ ω c ( 0 ) = λ n + λ + ( 1 − a 2 + β ) ω m ( i ) = ω c ( i ) = λ 2 ( n + λ ) , i = 1 ∼ 2 n \begin{aligned} &\omega_{m}^{\left(0\right)}=\frac{\lambda}{n+\lambda}\\ & \omega_c^{(0)}=\frac{\lambda}{n+\lambda}+\left(1-a^{2}+\beta\right)\\ & \omega_{m}^{\left(i\right)}=\omega_{c}^{\left(i\right)}=\frac{\lambda}{2\left(n+\lambda\right)},i =1\sim2n \\ \end{aligned} ωm(0)=n+λλωc(0)=n+λλ+(1a2+β)ωm(i)=ωc(i)=2(n+λ)λ,i=12n
    上述式中的下标m为均值c为协方差上标为第几个采样点,参数 λ = α 2 ( n + k ) − n \lambda=\alpha^{2}\left(n+k\right)-n λ=α2(n+k)n是一个缩放比例参数用来降低总的预测误差

α的选取控制了采样点的分布状态;

k为待选参数,其具体取值虽然没有界限,但通常应确保矩阵 ( n + λ ) P (n+\lambda)P (n+λ)P为半正定矩
。待选参数 β \beta β≥0是一个非负的权系数,它可以合并方程中高阶项的动差,这样就可以把高阶项的影响包括在内。

上述内容即使今天的全部内容了,感谢大家的观看,下次内容将进行具体的仿真验证。

如果方便,辛苦大家点个赞和关注哦!
您的点赞或评论或关注是对我最大的肯定,谢谢大家!!!

ref:卡尔曼滤波原理及应用MATLAB仿真–黄小平

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/1058.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习李宏毅学习笔记36

文章目录 前言Meta learning应用总结 前言 Meta learning(二)应用方向 Meta learning应用 回顾gradient descen Θ0(initial的参数)是可以训练的,一个好的初始化参数和普通的是有很大差距的。可以通过一些训练的任务…

2 Prometheus 简介

目录 1. 起源 2. Prometheus 架构 2.1 指标收集 2.2 服务发现 2.3 聚合和警报 2.4 查询数据 2.5 服务自治 2.6 冗余和高可用性 2.7 可视化 3. Prometheus数据模型 3.1 指标名称 3.2 标签 3.3 采样数据 3.4 符号表示 3.5 保留时间 4. 安全模型 5. Prometheus生态…

Dubbo【Dubbo实战(用户更新业务消费者实现、用户删除业务消费者实现、复习内容) 】(六)-全面详解(学习总结---从入门到深化)

目录 Dubbo实战_用户更新业务消费者实现 Dubbo实战_用户删除业务消费者实现 复习内容: Dubbo实战_用户更新业务消费者实现 在Consumer中调用更新用户业务 /*** 根据用户id修改用户名字* param users* return*/Integer updateUsers(User users);/*** 根据用户id查…

物种气候生态位动态量化与分布特征模拟----R语言

在全球气候快速变化的背景下,理解并预测生物种群如何应对气候变化,特别是它们的地理分布如何变化,已经变得至关重要。利用R语言进行物种气候生态位动态量化与分布特征模拟,不仅可以量化描述物种对环境的需求和适应性,预…

掌握Python的X篇_4_开发工具ipython与vscode的安装使用,作业

本篇将会介绍两个工具的安装及使用来提高Python的编程效率。 ipython:比python更好用的交互式开发环境vscode:本身是文本编辑器,通过安装相关的插件vscode可以作为python集中开发环境使用 掌握Python的X篇_4_开发工具ipython与vscode的安装使…

TipDM数据挖掘建模平台产品功能特点

TipDM数据挖掘建模平台是可视化、一站式、高性能的数据挖掘与人工智能建模服务平台,致力于为使用者打通从数据接入、数据预处理、模型开发训练、模型评估比较、模型应用部署到模型任务调度的全链路。平台内置丰富的机器学习、深度学习、人工智能算法,可覆…

Lecture 8 Deep Learning for NLP: Recurrent Networks

目录 Problem of N-gram Language Model N-gram 语言模型的问题Recurrent Neural Network(RNN) 循环神经网络RNN Language Model: RNN 语言模型Long Short-Term Memory Model (LSTM) 长短期记忆模型(LSTM)Gating Vector 门向量Forget Gate 忘记门Input G…

C#核心知识回顾——3.继承构造、拆装箱、多态

1.继承中的构造函数: 特点: 当申明一个子类对象时 先执行父类的构造函数,再执行子类的构造函数注意!!: 1.父类的无参构造很重要 2.子类可以通过base关键字代表父类调用父类构造 public class Mot…

2.设计模式之前5种设计模式单例工厂原型建造者适配器

1.怎么掌握设计模式? 独孤5剑 先是锋利的剑 后面是无剑才是最强的 ,GOF四人组写的<设计模式>书,包含了23种,实际可能还有其他,不要被束缚(只是覆盖了大部分).设计模式适合的人群: 1.不知道设计模式 2.有编程经验,但是写的好多代码有设计模式却不知道 3.学习过设计模式,发…

Audio API 实现音频播放器

市面上实现音频播放器的库有很多&#xff0c;比如wavesurfer.js、howler.js等等&#xff0c;但是都不支持大音频文件处理&#xff0c;100多M的文件就有可能导致程序崩溃。总之和我目前的需求不太符合&#xff0c;所以打算自己实现一个音频播放器&#xff0c;这样不管什么需求 在…

建设Web3需要Web2的人才?探索传统技能在Web3时代的作用

摘要&#xff1a;Web3作为下一代互联网技术的前沿&#xff0c;许多人关注着它的发展和应用。然而&#xff0c;建设Web3是否需要Web2的人才仍然是一个有争议的问题。 Web3作为下一代互联网技术&#xff0c;以去中心化、智能合约和用户自治等特点引起了广泛的关注。与此同时&…

JAVA1

文章目录 计算机的硬件与软件DOS命令 计算机的硬件与软件 DOS命令