物种气候生态位动态量化与分布特征模拟----R语言

在全球气候快速变化的背景下,理解并预测生物种群如何应对气候变化,特别是它们的地理分布如何变化,已经变得至关重要。利用R语言进行物种气候生态位动态量化与分布特征模拟,不仅可以量化描述物种对环境的需求和适应性,预测物种的潜在生态位和分布,还可以模拟物种分布的动态变化,捕捉生物种群生态位的时空异质性。这种技术为我们提供了一种更加精确、系统的工具,有助于我们更好地理解生物种群分布的生态驱动机制,为制定和实施生物保护策略提供科学依据。

    R语言是一种广泛用于统计分析和图形表示的编程语言,强大之处在于可以进行多元数据统计分析,以及丰富的生态环境数据分析的方法,在生态学领域得到广泛应用。将通过R语言多个程序包与GIS融合应用,提升物种气候生态位动态量化与分布特征模拟的研究方法和技能。

点击查看原文icon-default.png?t=N5K3https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247535295&idx=1&sn=804aecdf2389829a5dbcdd8f69b6f0f1&chksm=ce64a054f913294235be6c4c2a1e839db0655f77f3e1be2e949f42b7a3dd497b9b03b1f2c208&token=1258551138&lang=zh_CN#rd

目标:

1、理解物种气候生态位的概念和作用;

2、掌握R语言在物种气候生态位动态量化与分布特征模拟中的基本操作;

3、学会利用R语言进行物种气候生态位动态量化与分布特征模拟的实际案例分析;

4、培养对物种气候生态位动态量化与分布特征模拟的研究方法和技能。

专题一、引言

1) 物种气候生态位理论基础

2) 物种分布特征与物种分布模型的基本原理

3) R语言基础 (R语言环境设置和基本操作、数据导入、处理和可视化)

专题二、数据获取与处理方法

1) 数据获取途径与方法

掌握模型所需数据类型,了解常用数据库与数据获取方法。

2) 数据清洗与变量选择

掌握模型数据输入格式与数据选择标准,学会用多种方式实现数据清洗与变量选择

专题三、组合物种分布模型(Ensemble Species Distribution Model)的原理与使用

1、组合物种分布模型算法原理与参数组成

常用算法:通用加法模型(GAM)、广义线性模型(GLM)、多元自适应回归(MARS)、分类树分析(CTA)、广义增强模型(GBM)、最大熵(Maxent)、人工神经网络(ANN)、随机森林(RF)、支持向量机(SVM)

章节目标:掌握不同算法的原理与参数设置方法

2、物种分布特征模拟

分别基于单一算法与组合算法进行物种分布特征模拟,并读模拟结果。

章节目标:可独立使用R语言完成物种分布特征模拟。

3、效果评价

评价指标:接收操作特征 (ROC) 曲线 (AUC) 下的面积、Cohen 的 Kappa 系数、遗漏率、灵敏度(真阳性率)和特异性(真阴性率)

章节目标:了解不同评价指标计算原理。

4、物种分布特征预测

章节内容与目标:设置不同情景,实现物种适生区预测

专题四、拓展研究

1、物种气候生态位动态量化

以入侵物种互花米草为例,分析量化物种在原产地与入侵地之间的生态位的差异性。主要步骤:二维网格物种地理空间和环境空间的定义、应用核平滑计算二维环境空间的气候密度、通过随机检验方法对原产地和入侵区气候生态位的相似性进行统计检验,量化入侵区相比原产地的气候生态位动态等。

2、物种适生区质心转移

基于物种在不同时空尺度的模拟结果,统计并分析物种适生区变化情况,并在空间上实现质心转移的可视化分析。

专题五、结果分析与论文写作

1、不同算法结果解读、比较

2、论文制图与写作技巧

专题六、案例分析

1、基于单个物种分布模型的案例

2、基于组合物种分布模型的案例

专题七、总结和展望

  1. 物种分布模型的局限性和未来发展方向
  2. 学习资源和进一步学习的建议

原文链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/1053.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

掌握Python的X篇_4_开发工具ipython与vscode的安装使用,作业

本篇将会介绍两个工具的安装及使用来提高Python的编程效率。 ipython:比python更好用的交互式开发环境vscode:本身是文本编辑器,通过安装相关的插件vscode可以作为python集中开发环境使用 掌握Python的X篇_4_开发工具ipython与vscode的安装使…

TipDM数据挖掘建模平台产品功能特点

TipDM数据挖掘建模平台是可视化、一站式、高性能的数据挖掘与人工智能建模服务平台,致力于为使用者打通从数据接入、数据预处理、模型开发训练、模型评估比较、模型应用部署到模型任务调度的全链路。平台内置丰富的机器学习、深度学习、人工智能算法,可覆…

Lecture 8 Deep Learning for NLP: Recurrent Networks

目录 Problem of N-gram Language Model N-gram 语言模型的问题Recurrent Neural Network(RNN) 循环神经网络RNN Language Model: RNN 语言模型Long Short-Term Memory Model (LSTM) 长短期记忆模型(LSTM)Gating Vector 门向量Forget Gate 忘记门Input G…

C#核心知识回顾——3.继承构造、拆装箱、多态

1.继承中的构造函数: 特点: 当申明一个子类对象时 先执行父类的构造函数,再执行子类的构造函数注意!!: 1.父类的无参构造很重要 2.子类可以通过base关键字代表父类调用父类构造 public class Mot…

2.设计模式之前5种设计模式单例工厂原型建造者适配器

1.怎么掌握设计模式? 独孤5剑 先是锋利的剑 后面是无剑才是最强的 ,GOF四人组写的<设计模式>书,包含了23种,实际可能还有其他,不要被束缚(只是覆盖了大部分).设计模式适合的人群: 1.不知道设计模式 2.有编程经验,但是写的好多代码有设计模式却不知道 3.学习过设计模式,发…

Audio API 实现音频播放器

市面上实现音频播放器的库有很多&#xff0c;比如wavesurfer.js、howler.js等等&#xff0c;但是都不支持大音频文件处理&#xff0c;100多M的文件就有可能导致程序崩溃。总之和我目前的需求不太符合&#xff0c;所以打算自己实现一个音频播放器&#xff0c;这样不管什么需求 在…

建设Web3需要Web2的人才?探索传统技能在Web3时代的作用

摘要&#xff1a;Web3作为下一代互联网技术的前沿&#xff0c;许多人关注着它的发展和应用。然而&#xff0c;建设Web3是否需要Web2的人才仍然是一个有争议的问题。 Web3作为下一代互联网技术&#xff0c;以去中心化、智能合约和用户自治等特点引起了广泛的关注。与此同时&…

JAVA1

文章目录 计算机的硬件与软件DOS命令 计算机的硬件与软件 DOS命令

大数据开发基础-环境配置篇-Hadoop集群安装

鼠鼠接下来将更新一系列自己在学习大数据开发过程中收集的资源、和自己的总结、以及面经答案、LeetCode刷题分析题解。 首先是大数据开发基础篇 环境搭建、组件面试题等 其次是更新大数据开发面经的java面试基础 最后更新一个大数据开发离线数仓的实战项目&#xff0c;自己写入…

Redis的数据类型及对应的数据结构(二)

接上篇&#xff1a;Redis的数据类型及对应的数据结构&#xff08;一&#xff09;_鱼跃鹰飞的博客-CSDN博客 本篇主要讨论剩下的几种数据结构的应用场景 应用场景 集合的主要几个特性&#xff0c;无序、不可重复、支持并交差等操作。 因此 Set 类型比较适合用来数据去重和保…

kafka生产者api和数据操作

Kafka 生产者 发送流程 消息发送过程中涉及到两个线程——main线程和Sender线程 main线程 使用serializer&#xff08;并非java默认&#xff09;序列化数据&#xff0c;使用partitioner确认发送分区 在main线程中创建了一个双端队列RecordAccumulator&#xff0c;main线程将…

【半监督医学图像分割 2023 CVPR】BCP

【半监督医学图像分割 2023 CVPR】BCP 论文题目&#xff1a;Bidirectional Copy-Paste for Semi-Supervised Medical Image Segmentation 中文题目&#xff1a;双向复制粘贴半监督医学图像分割 论文链接&#xff1a;https://arxiv.org/abs/2305.00673 论文代码&#xff1a;http…