Eviews用向量自回归模型VAR实证分析公路交通通车里程与经济发展GDP协整关系时间序列数据和脉冲响应可视化...

全文下载链接:http://tecdat.cn/?p=27784

河源市是国务院1988年1月7日批准设立的地级市,为了深入研究河源市公路交通与经济发展的关系,本文选取了1988-2014年河源市建市以来24年的地区生产总值(GDP)和公路通车里程(GL)的时间序列数据,其中公路通车里程(GL)用来反映河源市公路交通发展状况,地区生产总值(GDP)反映河源市的经济增长状况点击文末“阅读原文”获取完整代码数据

相关视频

为了消取数据的异方差,将原始数据取对数,分别记做LogGDP和LogGL,数据见表,采用ADF法对LogGDP和LogGL的平稳性进行单位根检验。

110b66aab0d2e492dee891cb4e246cf2.png

首先,对1988-2014年河源市24年的LogGDP和LogGL时间序列进行ADF单位根检验,单位根检验结果如表:

0dcb6d950d12de8e43a850c7ecda1bb6.png

98a59334d63c6529f3d10ee95ebc5283.png

t值和p值是等效的,p值要求小于给定的显著水平,越小越好,小于0.05.等于0是最好的。结果显示,LogGDP和LogGL的ADF值分别为-3.160130和-1.895105,均大于水平值,说明接受原假设,LogGDP和LogGL序列存在单位根,为非平稳序列。因此,需要对LogGDP和LogGL序列继续第二步检验,即对LogGDP和LogGL的一阶差分进行检验,结果如表 :

016072f2a01a0d46a6746416ec070767.png

49201c072f00986eb7d4a298ed629c85.png

结果显示,LogGDP和LogGL经过一阶差分检验,得到一阶差分序列D(LogGDP)和D(LogGL)的p值分别为0.0046和 0.0000,均小于0.05的显著值。由于D(LogGDP)和D(LogGL)都是单整序列,且单整阶数相同,均为I(1),所以LogGDP和LogGL两序列之间可能存在协整关系。


点击标题查阅往期内容

9fc8f72c79ec65a779964dde470edf5e.png

向量自回归VAR的迭代多元预测估计 GDP 增长率时间序列|数据分享

outside_default.png

左右滑动查看更多

outside_default.png

01

c01377539b72846be8dc071c25c2a81b.png

02

914f309021be7db29faac0f7ecea758d.png

03

482b5ce6287b0be9fcdbb6883c8c955e.png

04

65d06b1b731400ea4cf53755e8cd4b9a.png

GDP与公路交通里程GL协整性检验 

由序列的平稳性检验结果可知,河源市地区生产总值GDP和公里通车里程GL在1988-2014年这个时间序列中可能存在协整关系,协整检验的方法有Engle Granger两步法和Johansen极大似然法前者适合对两变量的模型进行协整检验后者适合在多变量的VAR模型中进行检验。

f8e4b275f539aeadfb2e137efbea878d.png

5d7ce38b47d002e7dc9f37e702999caf.png

利用engle和granger提出的两步检验法: 

5b9b52277d6f5dd65fc1e520881eb359.png

2d8d42e8649342c00027143f0c4e4125.png

首先建立OLS回归模型,结果为 

026636641bbaf69d87e32ab687578ec2.png

首先建立模型:y=ax+c+e,结果为loggdp= 2.332247*loggl + -7.210750

由ADF单位根检验结果可以看出上述变量是一阶平稳的符合granger因果关系检验的条件.现对各变量之间进行granger因果关系检验以确定它们之间的相互影响关系.取滞后阶数为2阶。

granger因果检验:

a25f5238ab620060fe13a9a93e274720.png

从结果可知拒绝loggl不能granger loggdp的假设,即loggl granger引起loggdp;但是不能拒绝loggdp不能granger引起loggl,即接受loggdp不能granger引起loggl。

97866a4ca76d4d742ffedc0570cfbc8c.png

同时,对方程的残差进行ADF检验结果可以看出残差序列不是平稳的,因此loggdp和loggl之间不存在协整关系。

建立VAR模型 

利用Eviews计量经济分析软件,本文对logGDP、loggl变量建立VAR(1)模型,对于VAR模型滞后阶数的选择,得到如表所列的5个评价指标,且5个指标均认为1阶合理即建立VAR(1)模型。

52a8e0f9ad142013f14f863787b1119a.png

同时,有两类回归统计量出现在VAR对象估计输出的底部:

ee445471cc71d7d0131ffba6fe679723.png

输出的第一部分的标准OLS回归统计量。根据各自的残差分别计算每个方程的结果,并显示在对应的列中。

输出的第二部分是VAR模型的回归统计量。

即协整方程式是:

LOGGDP=1.36534925116*LOGGDP(-1)-0.326349983643*LOGGDP(-2)+0.139864325278*LOGGL(-1)-0.239810823184*LOGGL(-2)+0.44758535991

d225ae5af0984b8e82452c244e9f8ef9.png

可以看到VAR模型的所有根模的倒数都小于1,即都在单位圆内,则该模型是稳定的。可以对VAR模型进行一个标准差的脉冲响应函数分析。

脉冲响应函数是用来衡量随机扰动项的一个标准差冲击对其他变量当前与未来取值的影响轨迹它能够比较直观地刻画变量之间的动态交互作用。

a54fe0222b4a59a6e9fd7cf59b40b1b3.png

本文继续利用方差分解技术分析经济增长速度、交通量增长之间的相互贡献率。进行方差分解示意图。

69e87b010ed8a4e0da62160ea0429ad8.png

各变量对经济增长速度的贡献率。

实证检验

为了检验所建立交通量VAR预测模型的效果,用EVIEWS软件对loggdp历史数据仿真,得到如下预测模型。

loggdp  = @coef(1) loggdp(-1)  + @coef(2) loggdp(-2)  + @coef(3) loggl(-1)  + @coef(4) loggl(-2)  + @coef(5)

@coef(1) =  1.3653493

@coef(2) = -0.3263500

@coef(3) =  0.1398643

@coef(4) = -0.2398108

@coef(5) =  0.4475854

用VAR方法建立的GDP预测模型预测精度较高,效果较好。此外,可以得到如下的比较图:

ffd81991bf0e0c2d9eafb1432ddd857d.png

同时,对loggl历史数据仿真,得到如下预测模型。

loggl  = @coef(1) loggdp(-1)  + @coef(2) loggdp(-2)  + @coef(3) loggl(-1)  + @coef(4) loggl(-2)  + @coef(5)

@coef(1) =  0.9502916

@coef(2) = -0.8089714

@coef(3) =  0.5952874

@coef(4) = -0.0153147

@coef(5) =  1.7812591

以及历年loggl预测值、loggl实际值。

ce2def2900e9f5eb009435adeefa5bff.png

采用VAR方法建立的GDP预测模型有一个显著优点,即它不用对当期的GDP或其他变量作出预测,只用历史的GDP和交通量数据,就可以对GDP做出比较准确的预测,由于减少中间变量预测的传递,相应提高了模型预测精度。


edf9c35dbab745fc260664991a7319cf.png

点击文末“阅读原文”

获取全文完整资料。

本文选自《Eviews用向量自回归模型VAR实证分析公路交通通车里程与经济发展GDP协整关系时间序列数据和脉冲响应可视化》。

9cca92da2e9a1cf3b49293783f12d050.jpeg

e9029a8b8bde7a7e30514b25d7712ffa.png

点击标题查阅往期内容

R语言实现向量自回归VAR模型

R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列

Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列

Stata广义矩量法GMM面板向量自回归 VAR模型选择、估计、Granger因果检验分析投资、收入和消费数据

R语言时变向量自回归(TV-VAR)模型分析时间序列和可视化

R语言用向量自回归(VAR)进行经济数据脉冲响应研究分析

R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列

R语言VAR模型的不同类型的脉冲响应分析

R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型

R语言时变参数VAR随机模型

R语言估计时变VAR模型时间序列的实证研究分析案例

R语言向量自回归模型(VAR)及其实现

R语言实现向量自回归VAR模型

R语言估计时变VAR模型时间序列的实证研究分析案例

Python和R用EWMA,ARIMA模型预测时间序列

R语言用LASSO,adaptive LASSO预测通货膨胀时间序列

Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测

R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列

【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列

310315a651158bb10d23a7138787ff2c.png

2c02d97141276b39236c716b7b81049b.jpeg

783ec403bbe0654d677d02d985bd678e.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/106283.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux dup dup2函数

/*#include <unistd.h>int dup2(int oldfd, int newfd);作用&#xff1a;重定向文件描述符oldfd 指向 a.txt, newfd 指向b.txt,调用函数之后&#xff0c;newfd和b.txt close&#xff0c;newfd指向a.txtoldfd必须是一个有效的文件描述符 */ #include <unistd.h> #i…

selenium的Chrome116版驱动下载

这里写自定义目录标题 下载地址https://googlechromelabs.github.io/chrome-for-testing/#stable 选择chromedriver 对应的平台和版本 国内下载地址 https://download.csdn.net/download/dongtest/88314387

北斗高精度定位,破解共享单车停车乱象

如今&#xff0c;共享单车已经成为了许多人出行的首选方式&#xff0c;方便了市民们的“最后一公里”&#xff0c;给大家的生活带来了很多便利。然而&#xff0c;乱停乱放的单车也给城市治理带来了难题。在这种情况下&#xff0c;相关企业尝试将北斗导航定位芯片装载到共享单车…

Mysql->Hudi->Hive

一 准备 1.启动集群 /hive/mysql start-all.sh2.启动spark-shell spark-shell \--master yarn \ //--packages org.apache.hudi:hudi-spark3.1-bundle_2.12:0.12.2 \--jars /opt/software/hudi-spark3.1-bundle_2.12-0.12.0.jar \--conf spark.serializerorg.apache.spark.…

【数据结构】双向链表详解

当我们学习完单链表后&#xff0c;双向链表就简单的多了&#xff0c;双向链表中的头插&#xff0c;尾插&#xff0c;头删&#xff0c;尾删&#xff0c;以及任意位置插&#xff0c;任意位置删除比单链表简单&#xff0c;今天就跟着小张一起学习吧&#xff01;&#xff01; 双向链…

12个微服务架构模式最佳实践

微服务架构是一种软件开发技术&#xff0c;它将大型应用程序分解为更小的、可管理的、独立的服务。每个服务负责特定的功能&#xff0c;并通过明确定义的 API 与其他服务进行通信。微服务架构有助于实现软件系统更好的可扩展性、可维护性和灵活性。 接下来&#xff0c;我们将介…

vue中预览xml并高亮显示

项目中有需要将接口返回的数据流显示出来&#xff0c;并高亮显示&#xff1b; 1.后端接口返回blob,类型为xml,如图 2.页面中使用pre code标签&#xff1a; <pre v-if"showXML"><code class"language-xml">{{xml}}</code></pre> …

RJ45水晶头网线顺序出错排查

线序 网线水晶头RJ45常用的线序标准ANSI / TIA-568定义了T568A与T568B两种线序&#xff0c;一般使用T568B&#xff0c;水晶头8个孔对应的8条线颜色如下图&#xff1a; 那1至8的编号&#xff0c;是从水晶头哪一面为参考呢&#xff0c;如下图&#xff0c;是水晶头金手指一面&am…

Docker从认识到实践再到底层原理(四-2)|Docker镜像仓库实战案例

前言 那么这里博主先安利一些干货满满的专栏了&#xff01; 首先是博主的高质量博客的汇总&#xff0c;这个专栏里面的博客&#xff0c;都是博主最最用心写的一部分&#xff0c;干货满满&#xff0c;希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…

SVN 索引版本与打包版本号不匹配

今天突然遇到了一个问题&#xff0c;SVN上传不了&#xff0c;错误提示如下&#xff1a; 解决方法&#xff1a; 1.其实&#xff0c;这是SVN库不小心搞坏了&#xff0c;只能重新再创建一个SVN仓库了。

基于Hugo 搭建个人博客网站

目录 1.环境搭建 2.生成博客 3.设置主题 4.将博客部署到github上 1.环境搭建 1&#xff09;安装Homebrew brew是一个在 macOS 操作系统上用于管理软件包的包管理器。类似于centos下的yum或者ubuntu下的apt&#xff0c;它允许用户通过命令行安装、更新和管理各种软件工具、…

自动化测试:Selenium中的时间等待

在 Selenium 中&#xff0c;时间等待指在测试用例中等待某个操作完成或某个事件发生的时间。Selenium 中提供了多种方式来进行时间等待&#xff0c;包括使用 ExpectedConditions 中的 presence_of_element_located 和 visibility_of_element_located 方法等待元素可见或不可见&…