人工智能:神经细胞模型到神经网络模型

人工智能领域中的重要流派之一是:从神经细胞模型(Neural Cell Model)到神经网络模型(Neural Network Model)。

图片

一、神经细胞模型

第一个人工神经细胞模型是“MP”模型,它是由麦卡洛克、匹茨合作,于1943年研究成功的,这是关于神经细胞模型的奠基性工作,因而人们认为它是从脑的生物原型出发探讨人工智能的开创性成果。

“MP”模型从微观上对脑的基本单元——神经细胞的下列特性进行了模拟:

1.神经细胞的“兴奋”“抑制”两种状态,认为神经细胞的活动遵守“全或无”定律。

2.神经细胞之间的“突触”联系,分为兴奋型突触、抑制型突触。

3.神经细胞的输入、输出、多输入、单输出。输入称为“树突”,输出称为“轴突”。

4.神经细胞的空间整合作用,对不同输入端传入细胞的神经电脉冲进行信号处理。

5.神经细胞的阈值效应,当输入电脉冲的时空整合结果,使细胞膜电位升高超过阈值时,细胞兴奋,产生输出冲动。

在“MP”模型的基础上,克里纳(S.C.Kleene)等学者进一步发展与完善,研制了带有反馈的闭环神经细胞模型,在神经细胞模型的基本逻辑阈值元件的基础上,发展了“自动机理论”(Automata)。

改进的神经细胞模型,考虑了神经细胞“结构可塑性”,即突触联结系数的可变性,神经细胞之间的联结强度的可调节性。1949年,心理学家荷布(D.O.Hebb)在其著作《组织行为》(Organization Behavior)中指出,当神经细胞参与某种心理活动时,细胞之间的联结通路的信息传导能力将会增强,即所谓“Hebb学习规则”。此外,他还考虑了神经细胞对输入信号的时间整合作用、突触延时、不应期等。利用改进的神经细胞模型,可以研究神经细胞的学习功能、遗传特性、疲劳效应。

二、神经网络模型

图片

在神经细胞模型的基础上,可进一步研究各种神经网络模型,或称为“脑模型”。

50年代末到60年代初,曾出现过人工神经网络或脑模型研究的第一次高潮,例如:

“感知机”(Perceptron),是1957年由罗森勃拉特(F.Rosenblatt)等研制的,具有视觉感知与分类学习功能,最早的、最著名的脑模型。

简单感知机为三层结构:

1.输入层:感受神经网络。

2.联系层:中枢神经网络。

3.输出层:效应神经网络。

通过示教学习与样本训练,采用对“刺激—反应”的奖惩方式,感知机可以进行某些简单的文字识别、图像识别、声音识别。

在60年代初期,感知机曾盛行一时,据估计有近百个研究机构和公司,从事各种类型的感知机的研究和开发工作,进行文字、图像、声音识别的实验,例如,Mark I、Mark Ⅱ等。

但是,由于简单感知机在原理和功能上的局限性,对复杂图像的感知能力低,对非线性分类识别问题缺乏有效学习方法,以及受到当时电子技术水平的限制,人们对感知机的过高期望没有得到实现。

1969年,美国麻省理工学院(MIT)出版了关于感知机的专著《Perceptrons:An In­troduction to Computational Geometry》,作者为明斯基(M.L.Minsky)等,对简单感知机的研究结果进行了总结与系统的分析,指出简单感知机有严重的缺陷,无法识别线性不可分的模式,即使简单的异或问题,也无能为力。这种批评更促使感知机与神经网络的研究在70年代落入了低潮。

但是,仍有不少学者在困难条件下坚持人工神经网络的研究。例如:1969年,日本学者中野提出了“联想机”(Associatron);1972年,永野研究了“多层学习脑模型”;1973年,福岛提出了“认知机”(Cognitron)。

此外,除了从微观仿生学观点研究上述基于阙逻辑元件的神经网络,还有从宏观仿生学观点研究的人工神经网络,例如:1961年,德国学者斯泰布什(Steinbuch)提出的“学习矩阵”;1963年,李(Lee)提出的“人造神经元”(Artron)“拟神经元”(Neurotron)等。

80年代初期,人工神经网络的研究开始复苏。

1982年,荷普菲尔德(J.Hopfield)提出一种新的全互连型的人工神经网络,被称为“Hopfield网络”,引入所定义的能量函数,成功地求解了计算复杂度为NP完全型的“旅行商”问题。这项突破性的进展,再度唤起了人们对神经网络的研究热情。

1983年,欣顿(J.Hinton)、谢诺夫斯基(T.Sejnowski)研制出“Boltzman机”。基于这种神经网络模型,采用“模拟退火”方法,求解非线性动力学系统的优化问题,可以使系统从局部极小状态跳出,趋向于全局极小状态。

1986年,鲁姆哈特(D.Rumelhart)和麦卡兰德(J.Mc Clelland)发表了他们主编的“PDP”研究报告(Parall Distributing Processing-Explorations in the Microstructures of Cognition),公布了基于人工神经网络的并行分布处理的新进展,提出了关于认知过程的微结构理论。

同时,鲁姆哈特、维伯斯(P.Werbos)等研制出新一代的多层感知机,称之为反向传播神经网络(Back Propagation),简称“BP”网络。其中,在简单感知机上增加了中枢神经网络的联系层数,以构成多层感知机,并且采用反向传播的学习算法,利用反馈信息进行层间误差修正,从而突破了简单感知机的局限性,提高了多层感知机的识别能力,可用于求解非线性感知与复杂模式识别问题。

1986年,人工神经网络的又一项新进展是:自适应共振理论ART,它是由格罗斯伯格(S.Grossberg)、卡彭特(G.Carpenter)提出的。他们所研制的ART神经网络,具有良好的自适应特性。

1987年,首届国际人工神经网络学术大会在美国的圣迭戈(San-Diego)举行,在大会期间成立了国际神经网络协会(International Neural Netuork Society)简称INNS,掀起了人工神经网络研究的第二次高潮。

转自:人工智能:神经细胞模型到神经网络模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/107484.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【FAQ】本地录像视频文件如何推送到视频监控平台EasyCVR进行AI视频智能分析?

安防监控平台EasyCVR支持多协议、多类型设备接入,可以实现多现场的前端摄像头等设备统一集中接入与视频汇聚管理,并能进行视频高清监控、录像、云存储与磁盘阵列存储、检索与回放、级联共享等视频功能。视频汇聚平台既具备传统安防监控、视频监控的视频能…

数据结构——排序算法——希尔排序

希尔排序本质上是对插入排序的一种优化,它利用了插入排序的简单,又克服了插入排序每次只交换相邻两个元素的缺点。它的基本思想是: 1.将待排序数组按照一定的间隔分为多个子数组,每组分别进行插入排序。这里按照间隔分组指的不是…

产教融合 | 力软联合重庆科技学院开展低代码应用开发培训

近日,力软与重庆科技学院联合推出了为期两周的低代码应用开发培训课程,来自重庆科技学院相关专业的近百名师生参加了此次培训。 融合研学与实践,方能成为当代数字英才。本次培训全程采用线下模式,以“力软低代码平台”为软件开发…

双目立体视觉

#理想模型图 其中: b 为基线,即两个相机原点之间的距离 ; fl和fr 分别为左右相机的焦距,理想的双目相机flfrf ; cl和cr 分别为左右相机的光心,理想的双目相机clcr ; xl和xr 分别为空间中的一点…

分享一个复合故障数据集

复合故障数据集 1.本数据集采集了轴承从正常状态到故障状态的振动信号, 包含失效的原因:内圈磨损,保持架断裂,外圈磨损和外圈裂损。其中有单一类型故障、单一故障组合的复合故障等多种失效形式,可用于诊断滚动轴承早期…

Matlab图像处理-彩色图像基础

彩色的物理认识 人类能够感知的物体的颜色是由物体反射的光的性质决定的。如图8-2所示,可见光是由电磁波谱中较窄的波段组成。 如果物体反射的光在所有可见光波长范围内都是平衡的,那么从观察者的角度来看,它是白色的; 如果物体…

苹果数据恢复软件:Omni Recover Mac

Omni Recover是一款十分实用的Mac数据恢复软件,为用户提供了简单、安全、快速和高效的数据恢复服务。如果您遇到了Mac或iOS设备中的数据丢失和误删情况,不要着急,不妨尝试一下Omni Recover,相信它一定会给您带来惊喜。 首先&…

C++下基于模拟退火算法解决TSP问题

一、原理 首先明确TSP问题的目标是什么,假设当前有3个城市,需要你从第一个城市开始,遍历所有城市,然后回到初始位置,要求总路径最短。这个时候就需要计算每个城市之间的两两距离,然后按顺序确定一条最短路…

2023年数维杯数学建模C题宫内节育器的生产求解全过程文档及程序

2023年数维杯数学建模 C题 宫内节育器的生产 原题再现: 宫内节育器(IUD)是一种相对安全、有效、经济、可逆、简便,广大妇女易接受的节育器具,目前已成为我国育龄妇女的主要避孕措施。据悉,我国约70%妇女选…

SpringMvc第五战-【SpringMvcJSR303和拦截器】

前言: 小编阐述了springmvc 中的文件下载,以及jrebel的使用和文件下载以及多文件下载! 在本次小编将会介绍JSR303的概念,应用场景和在具体实例的使用;和拦截器的应用 一.JSR303的介绍 1.什么是JSR303? JSR是Java S…

在 Arweave 中轻松管理文件:借助 4EVERLAND 完成 Web3 前端Path Manifests的终极指南

为什么使用Path Manifests? 当在 IPFS 上发布 NFT 时,图片和元数据会被上传到 IPFS 网络以获得一个根 CID,其形式如下: ipfs://bafybeic36ik6cngu37xbzmpytuvyo7z3lyeen44clkkxq5d263zj4nkzr4 通过使用这个根 CID,每…

java程序处理三张表要进行怎么样的操作

首先第一步梳理思路,id没有存在说明是新添加的,如果id存在那就是对现有文章的修改。 /*** 发布文章或保存草稿** param dto* return*/Overridepublic ResponseResult submitNews(WmNewsDto dto) {//0.条件判断if(dto null||dto.getContent() null){ret…