第29章_瑞萨MCU零基础入门系列教程之改进型环形缓冲区

本教程基于韦东山百问网出的 DShanMCU-RA6M5开发板 进行编写,需要的同学可以在这里获取: https://item.taobao.com/item.htm?id=728461040949

配套资料获取:https://renesas-docs.100ask.net

瑞萨MCU零基础入门系列教程汇总: https://blog.csdn.net/qq_35181236/article/details/132779862


第29章 改进型环形缓冲区

29.1 基本概念

环形缓冲区是一个先进先出(FIFO)的闭环的存储空间。通俗的理解为,在内存中规划了一块“圆形”的地,将该“圆形”进行N(Ring Buffer的大小)等分,如下图所示:

但是实际上,处理器的内存不可能是这样一个闭环的存储方式,而是一片连续的,有起始有结束的空间:

开发者在程序中只能申请一段有头有尾的内存,通过软件设计将这片内存实现为一个环形的缓冲区。

一般而言,对于环形缓冲区的操作需要了解几个基本单位:

  • 内存起始地址pHead
  • 内存结束地址pEnd
  • 内存总大小Length
  • 可写内存起始地址pwStart
  • 可写内存大小wLength
  • 可读内存起始地址prStart
  • 可读内存大小rLength

可以发现这几个单位中是存在算术关系的:

将②式换算下,以可写内存大小为结果:

将可读的数据称作有效数据valid data,可读的起始内存地址叫有效数据起始地址pValid,可读的数据个数叫有效数据个数pValidLength。而可写的内存,位于有效数据之后,称之为pValidEnd:

基于以上信息,就可以将环形缓冲区的信息抽象为结构体RingBufferInfo:

typedef struct RingBuffInfo{unsigned char *pHead;unsigned char *pEnd;    unsigned char *pValid;    unsigned char *pValidEnd; unsigned int  nBufferLength;unsigned int  nValidLength;   
}RingBuffInfo;

由于可写的数据个数是可以通过缓冲区大小nBufferLength和有效数据个数nValidLength计算得到,因而未将其封装到RingBufferInfo结构体中。

对于环形缓冲区,主要的操作有:申请和释放空间,读写数据、清除数据。将这些操作方法和缓冲区信息一起封装为结构体RingBuffer:

typedef struct RingBuffer{RingBuffInfo info;int         (*Write)(struct RingBuffer *ptbuf, const unsigned char *src, unsigned int length);int         (*Read)(struct RingBuffer *ptbuf, unsigned char *dst, unsigned int length);int         (*Clear)(struct RingBuffer *ptbuf);int         (*Free)(struct RingBuffer *ptbuf);struct RingBuffer *next;
}RingBuffer;

第07行的链表,用来管理多个环形缓冲区:把它们放在一个链表里。

29.2 申请缓冲区

先申请一个RingBuffer结构体,再申请存储数据的空间,最后初始化。代码如下:

struct RingBuffer *RingBufferNew(unsigned int length)
{struct RingBuffer *ptbuf;if(0 == length)     return NULL;ptbuf = (struct RingBuffer*)malloc(sizeof(struct RingBuffer));if(NULL == ptbuf)   return NULL;if(NULL != ptbuf->info.pHead){free(ptbuf->info.pHead);}ptbuf->info.pHead = (uint8_t*)malloc(length);if(NULL == ptbuf->info.pHead) {printf("Error. Malloc %d bytes failed.\r\n", length);return -EIO;}ptbuf->info.pValid = ptbuf->info.pValidEnd = ptbuf->info.pHead;ptbuf->info.pEnd = ptbuf->info.pHead + length;ptbuf->info.nValidLength = 0;ptbuf->info.nBufferLength = length;ptbuf->Write = RingBufferWrite;ptbuf->Read = RingBufferRead;ptbuf->Clear = RingBufferClear;ptbuf->Free = RingBufferFree;return ptbuf;
}
  • 第06行:使用C库函数malloc申请一个RingBuffer结构体;
  • 第12行:分配存储数据的内存;
  • 第18~21行:初始化缓冲区的信息;
  • 第23~26行:填充操作函数;

29.3 释放缓冲区

先是否数据存储空间,再释放RingBuffer结构体本身。代码如下:

static int RingBufferFree(struct RingBuffer *ptbuf)
{if(ptbuf == NULL)           return -EINVAL;if(ptbuf->info.pHead==NULL) return -EINVAL;free((uint8_t*)ptbuf->info.pHead);ptbuf->info.pHead = NULL;ptbuf->info.pValid = NULL;ptbuf->info.pValidEnd = NULL;ptbuf->info.pEnd = NULL;ptbuf->info.nValidLength = 0;free((struct RingBuffer *)ptbuf);return ESUCCESS;
}

29.4 写数据到缓冲区

往缓冲区中写入数据需要考虑三个点:

  • 剩下的空间是否足够?
  • 超过空间的数据是丢还是留?
  • 写入数据时如果越界了,就需要缓冲器的头部继续写

如果从pValidEnd开始写入数据不会超过缓冲区的结束地址,那么直接从pValidEnd处开始写入数据即可:

如果从pValidEnd开始写入数据会超过缓冲区的结束地址,那么就需要考虑很多:

  • 计算从pValidEnd开始到pEnd可以写入多少个数据
  • 还剩多少个数据需要从pHead处开始写
  • 计算从pHead开始到pValid可以写入多少个数据,是否足够写入剩下的数据;不够的话如何处理?

在本书实验例程中,如果出现了剩余空间不足以容纳新数据时,就用新数据覆盖旧数据:

在这个过程中,有效数据的起始地址和结束地址,以及有效数据的个数,需要随着数据的写入跟着变化,这些数据的计算结合示意图可谓一目了然,此处就不再列出计算公式了。

如果缓冲区的剩余空间足够容纳新数据,那么写操作比较简单。代码如下:

static int RingBufferWrite(struct RingBuffer *ptbuf, const unsigned char *src, unsigned int length)
{......(省略内容)// copy buffer to pValidEndif( (ptbuf->info.pValidEnd + length) > ptbuf->info.pEnd )  // 超过了Buffer范围需要分为两段{len1 = (unsigned)(ptbuf->info.pEnd - ptbuf->info.pValidEnd);len2 = length - len1;memcpy((uint8_t*)ptbuf->info.pValidEnd, src, len1);memcpy((uint8_t*)ptbuf->info.pHead, src + len1, len2);ptbuf->info.pValidEnd = ptbuf->info.pHead + len2;   // 更新有效数据区尾地址}else{memcpy((uint8_t*)ptbuf->info.pValidEnd, src, length);ptbuf->info.pValidEnd = ptbuf->info.pValidEnd + length;}......(省略内容)
}

如果缓冲区的剩余空间不足以容纳新数据,在使用新数据覆盖老数据时,涉及的计算比较繁琐,代码如下:

static int RingBufferWrite(struct RingBuffer *ptbuf, const unsigned char *src, unsigned int length)
{......(省略内容)// 重新计算已使用区的起始位置if( (ptbuf->info.nValidLength + length) > ptbuf->info.nBufferLength )     // 要写入的数据超过了缓冲区总长度,分为两段写{move_len = ptbuf->info.nValidLength + length - ptbuf->info.nBufferLength;if( (ptbuf->info.pValid + move_len) > ptbuf->info.pEnd ){len1 = (unsigned)(ptbuf->info.pEnd - ptbuf->info.pValid);len2 = move_len - len1;ptbuf->info.pValid = ptbuf->info.pHead + len2;}else{ptbuf->info.pValid = ptbuf->info.pValid + move_len;}ptbuf->info.nValidLength = ptbuf->info.nBufferLength;}else{ptbuf->info.nValidLength = ptbuf->info.nValidLength + length;}return (int)length;
}

29.5 从缓冲区读数据

相比于写数据,读数据的操作就简单了许多。读数据时,从pValid处开始读,如果越过了pEnd,需要从pHead继续读取剩下的数据:

而如果从pValid处读取的数据个数不会越过pEnd,那么直接读出即可:

环形缓冲区的读函数代码如下:

static int RingBufferRead(struct RingBuffer *ptbuf, unsigned char *dst, unsigned int length)
{unsigned int len1 = 0, len2 = 0;if(ptbuf->info.pHead==NULL)     return -EINVAL;if(ptbuf->info.nValidLength==0) return -ENOMEM;if(length > ptbuf->info.nValidLength){length = ptbuf->info.nValidLength;}if( (ptbuf->info.pValid + length) > ptbuf->info.pEnd ){len1 = (unsigned int)(ptbuf->info.pEnd - ptbuf->info.pValid);len2 = length - len1;memcpy(dst, (uint8_t*)ptbuf->info.pValid, len1);memcpy(dst + len1, (uint8_t*)ptbuf->info.pHead, len2);ptbuf->info.pValid = ptbuf->info.pHead + len2;}else{memcpy(dst, (uint8_t*)ptbuf->info.pValid, length);ptbuf->info.pValid = ptbuf->info.pValid + length;}ptbuf->info.nValidLength -= length;return (int)length;
}

29.6 清除缓冲区

清除缓冲区时,让RingBuffer的各个成员恢复初始值即可:

static int RingBufferClear(struct RingBuffer *ptbuf)
{if(ptbuf == NULL)           return -EINVAL;if(ptbuf->info.pHead==NULL) return -EINVAL;if(ptbuf->info.pHead != NULL){memset(ptbuf->info.pHead, 0, ptbuf->info.nBufferLength);}ptbuf->info.pValid = ptbuf->info.pValidEnd = ptbuf->info.pHead;ptbuf->info.nValidLength = 0;return ESUCCESS;
}

本章完

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/108051.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt应用开发(基础篇)——普通按钮类 QPushButton QCommandLinkButton

一、前言 QPushButton类继承于QAbstractButton,是一个命令按钮的小部件。 按钮基类 QAbstractButton 按钮或者命令按钮是所有图形界面框架最常见的部件,当按下按钮的时候触发命令、执行某些操作或者回答一个问题,典型的按钮有OK,A…

F. Magic Will Save the World(DP)

Problem - F - Codeforces 黑暗势力的传送门在世界边界打开了,现在整个世界都面临着可怕的威胁。为了关闭传送门并拯救世界,你需要一个接一个地击败n个从传送门中出现的怪物。 只有女巫Vika能够应对这个威胁。她有两个魔法力量——水之魔法和火之魔法。…

Java学习之--类和对象

💕粗缯大布裹生涯,腹有诗书气自华💕 作者:Mylvzi 文章主要内容:Java学习之--类和对象 类和对象 类的实例化: 1.什么叫做类的实例化 利用类创建一个具体的对象就叫做类的实例化! 当我们创建了…

数据在内存中的存储——练习3

题目&#xff1a; 3.1 #include <stdio.h> int main() {char a -128;printf("%u\n",a);return 0; }3.2 #include <stdio.h> int main() {char a 128;printf("%u\n",a);return 0; }思路分析&#xff1a; 首先二者极其相似%u是无符号格式进行…

Qt点亮I.MX6U开发板的一个LED

本篇开始将会介绍与开发版相关的Qt项目&#xff0c;首先从点亮一个LED开始。I.MX6U和STM32MP157的相关信息都会用到&#xff0c;但是后期还是将I.MX6U的学习作为重点。当然其他开发版的开发也可以参考本博文。 文章目录 1. Qt是如何操控开发板上的一个LED2. 出厂内核设备树中注…

C++面试/笔试准备,资料汇总

文章目录 后端太卷&#xff0c;建议往嵌入式&#xff0c;qt&#xff0c;测试&#xff0c;音视频&#xff0c;C一些细分领域投简历。有任何疑问评论区聊&#xff0c;我看到了回复 C面试/笔试准备&#xff0c;资料汇总自我介绍项目实习尽可能有1.编程语言&#xff1a;一.熟悉C语言…

interview3-微服务与MQ

一、SpringCloud篇 &#xff08;1&#xff09;服务注册 常见的注册中心&#xff1a;eureka、nacos、zookeeper eureka做服务注册中心&#xff1a; 服务注册&#xff1a;服务提供者需要把自己的信息注册到eureka&#xff0c;由eureka来保存这些信息&#xff0c;比如服务名称、…

UMA 2 - Unity Multipurpose Avatar☀️八.UMA内置实用Recipes插件

文章目录 🟥 UMA内置Recipes位置🟧 CapsuleCollider🟨 Expressions : 表情管理(重点)🟩 Locomotion : 移动测试的插件🟦 Physics : Collider升级版🟥 UMA内置Recipes位置 如下图所示,UMA共内置5种实用Recipes,文件夹内的Text Recipes类型的文件即是实用Recipes. …

【Unity3D】UI Toolkit数据动态绑定

1 前言 本文将实现 cvs 表格数据与 UI Toolkit 元素的动态绑定。 如果读者对 UI Toolkit 不是太了解&#xff0c;可以参考以下内容。 UI Toolkit简介UI Toolkit容器UI Toolkit元素UI Toolkit样式选择器UI Toolkit自定义元素 本文完整资源见→UI Toolkit数据动态绑定。 2 数据…

科学中的人工智能:量子、原子和连续体技术概述

人工智能&#xff08;AI&#xff09;的进步正在推动自然科学领域的一种新的发现范式。如今&#xff0c;AI已经开始通过改进、加速和促进我们对各种空间和时间尺度上自然现象的理解来推动自然科学的发展&#xff0c;催生了一个被称为AI for science&#xff08;AI4Science&#…

VMware虚拟机安装运行MacOS系统

VMware虚拟机安装运行MacOS系统 1. VMware虚拟机安装运行MacOS系统1.1. 前期准备 2. 解锁虚拟机MacOS2.1. 解锁后效果 3. 开始安装MacOS系统3.1. 选择系统3.2. 虚拟机磁盘3.3. 镜像 4. 开机配置4.1. MacOS图标4.2. 磁盘4.2.1. 磁盘配置4.2.2. 抹掉数据 4.3. 安装系统4.3.1. 安装…

算法-27.移除元素-⭐

给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序可以改变。你不需要考虑数组中超出新长度后面…