线性代数的本质(四)——行列式

文章目录

  • 行列式

行列式

二阶行列式

行列式引自对线性方程组的求解。考虑两个方程的二元线性方程组
{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \begin{cases} a_{11}x_1+a_{12}x_2=b_1 \\ a_{21}x_1+a_{22}x_2=b_2 \end{cases} {a11x1+a12x2=b1a21x1+a22x2=b2
可使用消元法,得
( a 11 a 22 − a 12 a 21 ) x 1 = b 1 a 22 − a 12 b 2 ( a 11 a 22 − a 12 a 21 ) x 2 = a 11 b 2 − b 1 a 21 (a_{11}a_{22}-a_{12}a_{21})x_1=b_1a_{22}-a_{12}b_2 \\ (a_{11}a_{22}-a_{12}a_{21})x_2=a_{11}b_2-b_1a_{21} (a11a22a12a21)x1=b1a22a12b2(a11a22a12a21)x2=a11b2b1a21
a 11 a 22 − a 12 a 21 ≠ 0 a_{11}a_{22}-a_{12}a_{21}\neq 0 a11a22a12a21=0 时,得
x 1 = b 1 a 22 − a 12 b 2 a 11 a 22 − a 12 a 21 , x 2 = a 11 b 2 − b 1 a 21 a 11 a 22 − a 12 a 21 x_1=\frac{b_1a_{22}-a_{12}b_2}{a_{11}a_{22}-a_{12}a_{21}},\quad x_2=\frac{a_{11}b_2-b_1a_{21}}{a_{11}a_{22}-a_{12}a_{21}} x1=a11a22a12a21b1a22a12b2,x2=a11a22a12a21a11b2b1a21
从方程组解来看,分母 a 11 a 22 − a 12 a 21 a_{11}a_{22}-a_{12}a_{21} a11a22a12a21 是系数矩阵 A = [ a 11 a 12 a 21 a 22 ] A=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix} A=[a11a21a12a22] 的元素计算得到,称这个值为矩阵 A A A二阶行列式(determinant),记为 det ⁡ A \det A detA ∣ A ∣ |A| A ,或记为数表形式
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21} a11a21a12a22 =a11a22a12a21
利用二阶行列式的概念,分子也可写为二阶行列式
det ⁡ A 1 = ∣ b 1 a 12 b 2 a 22 ∣ = b 1 a 22 − a 12 b 2 det ⁡ A 2 = ∣ a 11 b 1 a 21 b 2 ∣ = a 11 b 2 − b 1 a 21 \det A_1=\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22}\end{vmatrix}=b_1a_{22}-a_{12}b_2 \\ \det A_2=\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2\end{vmatrix}=a_{11}b_2-b_1a_{21} detA1= b1b2a12a22 =b1a22a12b2detA2= a11a21b1b2 =a11b2b1a21
从上面对比可以看出, x j x_j xj 的矩阵 A j A_j Aj 是系数矩阵 A A A的第 j j j 列用常数项代替后的矩阵。这样,方程组的解可表示为
x 1 = det ⁡ A 1 det ⁡ A , x 2 = det ⁡ A 2 det ⁡ A x_1=\frac{\det A_1}{\det A},\quad x_2=\frac{\det A_2}{\det A} x1=detAdetA1,x2=detAdetA2

n n n 阶行列式

考虑三个方程的三元线性方程组,系数矩阵为
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] A=\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{bmatrix} A= a11a21a31a12a22a32a13a23a33
用消元法可知未知数的分母同样是系数矩阵 A A A 的元素运算得到,于是定义三阶行列式为
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix} =a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32} -a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31} a11a21a31a12a22a32a13a23a33 =a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31
由二阶行列式的定义,上式可变为
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 ∣ a 22 a 23 a 32 a 33 ∣ − a 12 ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ∣ a 11 a 12 a 21 a 22 ∣ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix}= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33}\end{vmatrix}- a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33}\end{vmatrix}+ a_{13}\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{vmatrix} a11a21a31a12a22a32a13a23a33 =a11 a22a32a23a33 a12 a21a31a23a33 +a13 a11a21a12a22
进一步探索 n n n 元线性方程组,可知高阶行列式定义。为书写方便,把元素 a i j a_{ij} aij 所在的行和列划掉后,剩下的元素组成的行列式称为 a i j a_{ij} aij余子式(cofactor),记作 M i j M_{ij} Mij ,并称
A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij
a i j a_{ij} aij代数余子式(algebraic cofactor)。

定义:方阵 A A A 的行列式用第一行元素的代数余子式定义为
det ⁡ A = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j = 1 n a 1 j A 1 j \det A=\begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ a_{n1}&a_{n2}&\cdots&a_{nn} \\ \end{vmatrix}=\sum_{j=1}^na_{1j}A_{1j} detA= a11a21an1a12a22an2a1na2nann =j=1na1jA1j
由定义易知,行列式可以按任意行(列)展开。
det ⁡ A = ∑ j = 1 n a i j A i j , by row  i det ⁡ A = ∑ i = 1 n a i j A i j , by col  j \det A=\sum_{j=1}^na_{ij}A_{ij}, \quad \text{by row }i \\ \det A=\sum_{i=1}^na_{ij}A_{ij}, \quad \text{by col }j detA=j=1naijAij,by row idetA=i=1naijAij,by col j

行列式的性质

性质:使用数学归纳法可知

  1. 行列式与其转置行列式相等: det ⁡ A T = det ⁡ A \det A^T=\det A detAT=detA
  2. 互换行列式两行(列),行列式改变符号。
    ∣ a b c d ∣ = − ∣ c d a b ∣ \begin{vmatrix}a&b\\c&d\end{vmatrix}=-\begin{vmatrix}c&d\\a&b\end{vmatrix} acbd = cadb
  3. 行列式的某一行(列)所有元素同乘以数 k k k,等于数 k k k乘以该行列式。
    ∣ k a b k c d ∣ = k ∣ a b c d ∣ \begin{vmatrix}ka&b\\kc&d\end{vmatrix}=k\begin{vmatrix}a&b\\c&d\end{vmatrix} kakcbd =k acbd
  4. 若行列式的某一行(列)的为两组数之和,则可表示为两行列式之和。
    ∣ a 1 + a 2 b c 1 + c 2 d ∣ = ∣ a 1 b c 1 d ∣ + ∣ a 2 b c 2 d ∣ \begin{vmatrix}a_1+a_2&b\\c_1+c_2&d\end{vmatrix}=\begin{vmatrix}a_1&b\\c_1&d\end{vmatrix}+\begin{vmatrix}a_2&b\\c_2&d\end{vmatrix} a1+a2c1+c2bd = a1c1bd + a2c2bd
  5. 把行列式的某一行(列)所有元素同乘以数 k k k 都加到另一行(列)对应的元素上去,行列式的值不变。
    ∣ a b c d ∣ = ∣ a + k b b c + k d d ∣ \begin{vmatrix}a&b\\c&d\end{vmatrix}=\begin{vmatrix}a+kb&b\\c+kd&d\end{vmatrix} acbd = a+kbc+kdbd
  6. 矩阵乘积的行列式等于行列式的乘积: det ⁡ ( A B ) = ( det ⁡ A ) ( det ⁡ B ) = det ⁡ ( B A ) \det(AB)=(\det A)(\det B)=\det(BA) det(AB)=(detA)(detB)=det(BA)

推论

  1. 行列式中若有两行(列)元素相同,该行列式的值为零。
  2. 行列式中某一行(列)的公因子可以提取到行列式符号外面。
  3. 行列式中若有两行(列)元素成比例,则此行列式等于零。
  4. det ⁡ ( k A ) = k n det ⁡ A \det(kA)=k^n\det A det(kA)=kndetA

由上面的性质,我们很容易得到:

  1. 出现零行和零列的行列式为零。
  2. 对角阵 A = diag ( λ 1 , λ 2 , ⋯ , λ n ) A=\text{diag}(\lambda_1,\lambda_2,\cdots,\lambda_n) A=diag(λ1,λ2,,λn) 的行列式 det ⁡ A = λ 1 λ 2 ⋯ λ n \det A=\lambda_1\lambda_2\cdots\lambda_n detA=λ1λ2λn
  3. 如果 A A A 是三角阵,行列式为主对角线元素的乘积。

对于高阶行列式,一般利用行列式的性质,初等变换化为三角行列式求解。

示例:可用数学归纳法证明范德蒙行列式(Vandermonde determinant):
∣ 1 1 ⋯ 1 a 1 a 2 ⋯ a n a 1 2 a 2 2 ⋯ a n 2 ⋮ ⋮ ⋮ ⋮ a 1 n − 1 a 2 n − 1 ⋯ a n n − 1 ∣ = ∏ 1 ⩽ i < j ⩽ n ( a j − a i ) \begin{vmatrix} 1 & 1& \cdots &1 \\ a_1 &a_2&\cdots &a_n \\ a_1^2 &a_2^2&\cdots &a_n^2 \\ \vdots &\vdots&\vdots &\vdots \\ a_1^{n-1} &a_2^{n-1}&\cdots &a_n^{n-1} \end{vmatrix}=\prod_{1⩽ i<j⩽n}(a_j-a_i) 1a1a12a1n11a2a22a2n11anan2ann1 =1i<jn(ajai)

行列式函数:若 A A A n n n阶矩 阵,可以将 det ⁡ A \det A detA 看作 A A A n n n 个列向量的函数。若 A A A 中除了一列之外都是固定的向量,则 det ⁡ A \det A detA 是线性函数。

假设第 j j j 列是变量,定义映射 x ↦ T ( x ) \mathbf x\mapsto T(\mathbf x) xT(x)
T ( x ) = det ⁡ A = det ⁡ [ a 1 ⋯ x ⋯ a n ] T(\mathbf x)=\det A=\det\begin{bmatrix}\mathbf a_1\cdots\mathbf x\cdots\mathbf a_n\end{bmatrix} T(x)=detA=det[a1xan]
则有
T ( c x ) = c T ( x ) T ( u + v ) = T ( u ) + T ( v ) T(c\mathbf x)=cT(\mathbf x) \\ T(\mathbf u+\mathbf v)=T(\mathbf u)+T(\mathbf v) T(cx)=cT(x)T(u+v)=T(u)+T(v)

克拉默法则

这里只讨论方程个数和未知数相等的 n n n元线性方程组
A x = b A\mathbf x=\mathbf b Ax=b
det ⁡ A ≠ 0 \det A\neq0 detA=0,那么它有唯一解
x j = det ⁡ A j ( b ) det ⁡ A , ( j = 1 , 2 , ⋯ , n ) x_j=\frac{\det A_j(\mathbf b)}{\det A},\quad(j=1,2,\cdots,n) xj=detAdetAj(b),(j=1,2,,n)

约定 A j ( b ) A_j(\mathbf b) Aj(b) 表示用向量 b \mathbf b b 替换矩阵 A A A的第 j j j列。

证:用 a 1 , a 2 , ⋯ , a n \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_n a1,a2,,an 表示矩阵 A A A 的各列, e 1 , e 2 , ⋯ , e n \mathbf e_1,\mathbf e_2,\cdots,\mathbf e_n e1,e2,,en 表示单位阵 I n I_n In 的各列。由分块矩阵乘法
A I j ( x ) = A [ e 1 ⋯ x ⋯ e n ] = [ A e 1 ⋯ A x ⋯ A e n ] = [ a 1 ⋯ b ⋯ a n ] = A j ( b ) \begin{aligned} AI_j(\mathbf x)&=A\begin{bmatrix}\mathbf e_1&\cdots&\mathbf x&\cdots&\mathbf e_n\end{bmatrix} \\ &=\begin{bmatrix}A\mathbf e_1&\cdots& A\mathbf x&\cdots& A\mathbf e_n\end{bmatrix} \\ &=\begin{bmatrix}\mathbf a_1&\cdots&\mathbf b&\cdots&\mathbf a_n\end{bmatrix} \\ &=A_j(\mathbf b) \end{aligned} AIj(x)=A[e1xen]=[Ae1AxAen]=[a1ban]=Aj(b)
由行列式的乘法性质
det ⁡ A det ⁡ I j ( x ) = det ⁡ A j ( b ) \det A\det I_j(\mathbf x)=\det A_j(\mathbf b) detAdetIj(x)=detAj(b)
左边第二个行列式可沿第 j j j 列余子式展开求得 det ⁡ I j ( x ) = x j \det I_j(\mathbf x)=x_j detIj(x)=xj。从而
x j det ⁡ A = det ⁡ A j ( b ) x_j\det A=\det A_j(\mathbf b) xjdetA=detAj(b)
det ⁡ A ≠ 0 \det A\neq0 detA=0,则上式得证。

行列式的几何理解

Grant:行列式告诉你一个线性变换对区域的缩放比例。

我们已经知道,线性变换保持网格线平行且等距。为了方便,我们只考虑在平面直角坐标系内,单位基向量 i , j \mathbf i,\mathbf j i,j 所围成的单位正方形区域的线性变换。

根据向量加法的平行四边形法则和线性变换基本性质知,变换后的区域为矩阵 A = [ a b c d ] A=\begin{bmatrix}a & b\\c & d\end{bmatrix} A=[acbd] 的列向量 [ a c ] \begin{bmatrix}a\\c\end{bmatrix} [ac] [ b d ] \begin{bmatrix}b\\d\end{bmatrix} [bd] 为邻边的平行四边形区域。

结论:二阶行列式的值表示由 A A A 的列确定的有向平行四边形的面积。

(1) 若 A A A 为对角阵,显然行列式 det ⁡ [ a b 0 d ] \det\begin{bmatrix}a & b\\0 & d\end{bmatrix} det[a0bd] 表示底为 a a a,高为 d d d 的平行四边形面积

在这里插入图片描述

(2) 更一般的情况 A = [ a b c d ] A=\begin{bmatrix}a & b\\c & d\end{bmatrix} A=[acbd] ,可以看出,行列式的值与面积有着紧密的联系。

在这里插入图片描述

(3) 矩阵 [ a 2 a a 1 ] \begin{bmatrix}a^2 & a\\a & 1\end{bmatrix} [a2aa1] 表示将单位正方形压缩成线段,面积自然为0,行列式的值为0

在这里插入图片描述

单位正方形区域缩放的比例,其实可以代表任意给定区域缩放的比例。这是因为,线性变换保持网格线平行且等距。对于空间中任意区域的面积,借助微积分的思想,我们可以采用足够的小方格来逼近区域的面积,对所有小方格等比例缩放,则整个区域也以同样的比例缩放。
volume  T ( Ω ) = ( det ⁡ T ) ( volume  Ω ) \text{volume }T(\Omega) = (\det T)(\text{volume }\Omega) volume T(Ω)=(detT)(volume Ω)
在这里插入图片描述

通过行列式的几何意义,我们就建立了线性变换、矩阵、行列式之间的关系。不难得出

  1. 复合线性变换缩放的比例相当于每次变换缩放比例的乘积,即
    det ⁡ A B = det ⁡ A det ⁡ B \det AB=\det A\det B detAB=detAdetB
  2. 行列式的值为零,表示将空间压缩到更低的维度,矩阵的列向量线性相关

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/109185.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Idea启动报错start failed闪退, RestfulToolkit-fix插件问题

前一天下班时还在正常使用的Idea&#xff0c;早上再次启动就报错闪退&#xff0c;报错信息非常的快的闪退也没有看清楚。做过的唯一更改就是前一天安装了 RestfulToolkit-fix 插件。 1、先查看报错的日志 在Idea安装路径的bin/ idea.bat文件中末尾处添加pause语句 保存后双击…

解决vue项目导出当前页Table为Excel

解决vue项目中导出当前页表格为Excel表格的方案 用到的技术&#xff1a; Vue2Element-uifile-saverxlsx 1、创建vue项目&#xff0c;安装element-ui 2、创建一个组件&#xff0c;组件内放入表格&#xff0c;和导出按钮 <template><div><!-- 导出的按钮 -->…

工程管理系统简介 工程管理系统源码 java工程管理系统 工程管理系统功能设计

鸿鹄工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离构建工程项目管理系统 1. 项目背景 一、随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大。为了提高工程管理效率、减轻劳动强度、提高信息处理速度和准确性&#xff0c;公司对内部工程管…

9.12 C++作业

实现一个图形类&#xff08;Shape&#xff09;&#xff0c;包含受保护成员属性&#xff1a;周长、面积&#xff0c; 公共成员函数&#xff1a;特殊成员函数书写 定义一个圆形类&#xff08;Circle&#xff09;&#xff0c;继承自图形类&#xff0c;包含私有属性&#xff1a;半…

ppt录制在哪?实用技巧分享!

在现代演示和培训中&#xff0c;PPT演示已经成为越来越流行的一种交流方式。而录制ppt也成为了很多商务演讲、教学讲解、产品演示等场合的必备技能。本文将为您介绍两种常见的ppt录制方式&#xff0c;帮助您轻松录制ppt演示的过程。 ppt录制在哪&#xff1f; ppt是一款流行的演…

类和对象(3)

文章目录 1.回顾上节2. 拷贝构造3. 运算符重载&#xff08;非常重要&#xff09;4. 赋值运算符重载 1.回顾上节 默认成员函数&#xff1a;我们不写&#xff0c;编译器自动生成。我们不写&#xff0c;编译器不会自动生成 默认生成构造和析构&#xff1a; 对于内置类型不做处理对…

分类预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测 目录 分类预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于SVM-Adaboost支持向量机结合Ada…

【数据结构】—堆排序以及TOP-K问题究极详解(含C语言实现)

食用指南&#xff1a;本文在有C基础的情况下食用更佳 &#x1f525;这就不得不推荐此专栏了&#xff1a;C语言 ♈️今日夜电波&#xff1a;ルミネセンス—今泉愛夏 1:01 ━━━━━━️&#x1f49f;──────── 5:05 …

重建大师创建缓存目录失败,密集匹配失败是什么原因呢

答&#xff1a;边缘瓦块点云比较稀疏就会有密集匹配失败。缓存目录修改下&#xff0c;修改浅一些&#xff0c;C/cache这样就行&#xff0c;进度条后方取消任务再重新提交。 重建大师是一款专为超大规模实景三维数据生产而设计的集群并行处理软件&#xff0c;输入倾斜照片&#…

华为云Stack的学习(六)

七、华为云Stack计算服务介绍 1.计算服务整体介绍 2.弹性云服务器ECS ECS&#xff08;Elastic Cloud Server&#xff09;&#xff0c;即弹性云服务器&#xff0c;是由vCPU、内存、磁盘等组成的&#xff0c;获取方便、弹性可扩展、按需使用的、虚拟的计算服务器。 ECS只需要花…

iptables 防火墙配置

文章目录 iptables 防火墙配置规则链的分类–五链处理的动作iptables 常用参数和作用iptables 防火墙配置查看规则链清空规则链设置默认规则将流入的流量丢弃允许ICMP协议流量通过删除默认策略允许所以流量通过设置将所有流入22端口的流量全部拒绝允许指定网段的22端口通过设置…

【日积月累】SpringBoot启动流程

目录 SpringBoot启动流程 1.前言2.构造一个SpringApplication的实例&#xff0c;完成初始化的工作SpringApplication实例构造完之后调用run方法&#xff0c;启动SpringApplication3.SpringBoot启动代码SpringBootConfigurationComponentScanEnableAutoConfiguration 总结参考…