分类预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测

目录

    • 分类预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测;
2.运行环境为Matlab2018b;
3.输入多个特征,分四类预测;
4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹;
5.可视化展示分类准确率。

模型描述

SVM-Adaboost支持向量机结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将支持向量机(SVM)和AdaBoost算法相结合,通过多输入模型进行预测。
具体流程如下:
数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。
特征提取:利用SVM模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。
AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。
模型评估:对预测结果进行评估。
模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoost算法的参数等。
预测应用:将优化后的模型应用于实际预测任务中,进行实时预测。
该方法的优点在于,SVM模型可以提取数据特征,而AdaBoost算法可以有效地利用多个特征向量进行加权组合,提高预测准确率。同时,该方法不仅适用于单一数据源的预测任务,也可以应用于多数据源的集成预测任务中。缺点在于,该方法对数据量和计算资源的要求较高,需要大量的训练数据和计算能力。

程序设计

  • 完整源码和数据获取方式:私信回复SVM-Adaboost支持向量机结合AdaBoost多输入分类预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/109171.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】—堆排序以及TOP-K问题究极详解(含C语言实现)

食用指南:本文在有C基础的情况下食用更佳 🔥这就不得不推荐此专栏了:C语言 ♈️今日夜电波:ルミネセンス—今泉愛夏 1:01 ━━━━━━️💟──────── 5:05 …

重建大师创建缓存目录失败,密集匹配失败是什么原因呢

答:边缘瓦块点云比较稀疏就会有密集匹配失败。缓存目录修改下,修改浅一些,C/cache这样就行,进度条后方取消任务再重新提交。 重建大师是一款专为超大规模实景三维数据生产而设计的集群并行处理软件,输入倾斜照片&#…

华为云Stack的学习(六)

七、华为云Stack计算服务介绍 1.计算服务整体介绍 2.弹性云服务器ECS ECS(Elastic Cloud Server),即弹性云服务器,是由vCPU、内存、磁盘等组成的,获取方便、弹性可扩展、按需使用的、虚拟的计算服务器。 ECS只需要花…

iptables 防火墙配置

文章目录 iptables 防火墙配置规则链的分类–五链处理的动作iptables 常用参数和作用iptables 防火墙配置查看规则链清空规则链设置默认规则将流入的流量丢弃允许ICMP协议流量通过删除默认策略允许所以流量通过设置将所有流入22端口的流量全部拒绝允许指定网段的22端口通过设置…

【日积月累】SpringBoot启动流程

目录 SpringBoot启动流程 1.前言2.构造一个SpringApplication的实例,完成初始化的工作SpringApplication实例构造完之后调用run方法,启动SpringApplication3.SpringBoot启动代码SpringBootConfigurationComponentScanEnableAutoConfiguration 总结参考…

自动驾驶多任务框架Hybridnets——同时处理车辆检测、可驾驶区域分割、车道线分割模型部署(C++/Python)

一、多感知任务 在移动机器人的感知系统,包括自动驾驶汽车和无人机,会使用多种传感器来获取关键信息,从而实现对环境的感知和物体检测。这些传感器包括相机、激光雷达、雷达、惯性测量单元(IMU)、全球导航卫星系统&am…

Java经典问题解答(9题)

文章目录 1、通关jwt靶场的其中任意两关(该题与Java无关)启动环境第4关第5关第7关 2、java是如何跨平台通信的3、java为什么需要类名和文件名一致4、main函数的作用是什么5、.class文件和.java是什么关系6、java在编写函数的时候void是什么意思7、java声…

IAM、EIAM、CIAM、RAM、IDaaS 都是什么?

后端程序员在做 ToB 产品或者后台系统时,都不可避免的会遇到账号系统、登录系统、权限系统、日志系统等这些核心功能。这些功能一般都是以 SSO 系统、RBAC 权限管理系统等方式命名,但这些系统合起来有一个专有名词:IAM。 IAM IAM 是 Identi…

Linux UDP编程流程

文章目录 UDP编程流程UDP协议无连接的特点UDP协议数据报的特点 UDP编程流程 UDP 提供的是无连接、不可靠的、数据报服务。服务器端和客户端没有什么本质上的区别。编程流程如下: socket()用来创建套接字,使用 udp 协议时,选择数据报服务 SOC…

小白如何选择阿里云服务器配置?CPU内存带宽系统盘选择

阿里云服务器配置选择_CPU内存/带宽/存储配置_小白指南,阿里云服务器配置选择方法包括云服务器类型、CPU内存、操作系统、公网带宽、系统盘存储、网络带宽选择、安全配置、监控等,阿小云分享阿里云服务器配置选择方法,选择适合自己的云服务器…

PCL 约束Delaunay三角网(C++详细过程版)

目录 一、算法原理二、代码实现三、结果展示1、原始点云2、普通Delaunay3、约束Delaunay本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、算法原理 首先提取边界点,然后根据边界点构建约束,最后在约束边界内构建Del…

flink 写入数据到 kafka 后,数据过一段时间自动删除

版本 flink 1.16.0kafka 2.3 流程描述: flink利用KafkaSource,读取kafka的数据,然后经过一系列的处理,通过KafkaSink,采用 EXACTLY_ONCE 的模式,将处理后的数据再写入到新的topic中。 问题描述&#xff1…