计算机竞赛 目标检测-行人车辆检测流量计数

文章目录

  • 前言
  • 1\. 目标检测概况
    • 1.1 什么是目标检测?
    • 1.2 发展阶段
  • 2\. 行人检测
    • 2.1 行人检测简介
    • 2.2 行人检测技术难点
    • 2.3 行人检测实现效果
    • 2.4 关键代码-训练过程
  • 最后

前言

🔥 优质竞赛项目系列,今天要分享的是

行人车辆目标检测计数系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1. 目标检测概况

1.1 什么是目标检测?

目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度(confidence)。

1.2 发展阶段

  1. 手工特征提取算法,如VJ、HOG、DPM

  2. R-CNN算法(2014),最早的基于深度学习的目标检测器之一,其结构是两级网络:

  • 1)首先需要诸如选择性搜索之类的算法来提出可能包含对象的候选边界框;
  • 2)然后将这些区域传递到CNN算法进行分类;
  1. R-CNN算法存在的问题是其仿真很慢,并且不是完整的端到端的目标检测器。

  2. Fast R-CNN算法(2014末),对原始R-CNN进行了相当大的改进:提高准确度,并减少执行正向传递所花费的时间。
    是,该模型仍然依赖于外部区域搜索算法。

  3. faster R-CNN算法(2015),真正的端到端深度学习目标检测器。删除了选择性搜索的要求,而是依赖于

  • (1)完全卷积的区域提议网络(RPN, Region Purpose Network),可以预测对象边界框和“对象”分数(量化它是一个区域的可能性的分数)。
  • (2)然后将RPN的输出传递到R-CNN组件以进行最终分类和标记。
  1. R-CNN系列算法,都采取了two-stage策略。特点是:虽然检测结果一般都非常准确,但仿真速度非常慢,即使是在GPU上也仅获得5 FPS。

  2. one-stage方法有:yolo(2015)、SSD(2015末),以及在这两个算法基础上改进的各论文提出的算法。这些算法的基本思路是:均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归。
    整个过程只需要一步,所以其优势是速度快,但是训练比较困难。

  3. yolov3(2018)是yolo作者提出的第三个版本(之前还提过yolov2和它们的tinny版本,tinny版本经过压缩更快但是也降低了准确率)。

2. 行人检测

这里学长以行人检测作为例子来讲解目标检测。

2.1 行人检测简介

行人检测( Pedestrian Detection)一直是计算机视觉研究中的热点和难点。行人检测要解决的问题是:找出图像或视频帧

行人检测技术有很强的使用价值,它可以与行人跟踪,行人重识别等技术结合,应用于汽车无人驾驶系统(ADAS),智能机器人,智能视频监控,人体行为分析,客流统计系统,智能交通等领域。

2.2 行人检测技术难点

由于人体具有相当的柔性,因此会有各种姿态和形状,其外观受穿着,姿态,视角等影响非常大,另外还面临着遮挡
、光照等因素的影响,这使得行人检测成为计算机视觉领域中一个极具挑战性的课题。行人检测要解决的主要难题是:

  • 外观差异大:包括视角,姿态,服饰和附着物,光照,成像距离等。从不同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和近距离的人体,在外观上差别也非常大。

  • 遮挡问题: 在很多应用场景中,行人非常密集,存在严重的遮挡,我们只能看到人体的一部分,这对检测算法带来了严重的挑战。

  • 背景复杂:无论是室内还是室外,行人检测一般面临的背景都非常复杂,有些物体的外观和形状、颜色、纹理很像人体,导致算法无法准确的区分。

  • 检测速度:行人检测一般采用了复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化。

2.3 行人检测实现效果

在这里插入图片描述

检测到行人后还可以做流量分析:

在这里插入图片描述

2.4 关键代码-训练过程

import cv2import numpy as npimport randomdef load_images(dirname, amout = 9999):img_list = []file = open(dirname)img_name = file.readline()while img_name != '':  # 文件尾img_name = dirname.rsplit(r'/', 1)[0] + r'/' + img_name.split('/', 1)[1].strip('\n')img_list.append(cv2.imread(img_name))img_name = file.readline()amout -= 1if amout <= 0: # 控制读取图片的数量breakreturn img_list# 从每一张没有人的原始图片中随机裁出10张64*128的图片作为负样本def sample_neg(full_neg_lst, neg_list, size):random.seed(1)width, height = size[1], size[0]for i in range(len(full_neg_lst)):for j in range(10):y = int(random.random() * (len(full_neg_lst[i]) - height))x = int(random.random() * (len(full_neg_lst[i][0]) - width))neg_list.append(full_neg_lst[i][y:y + height, x:x + width])return neg_list# wsize: 处理图片大小,通常64*128; 输入图片尺寸>= wsizedef computeHOGs(img_lst, gradient_lst, wsize=(128, 64)):hog = cv2.HOGDescriptor()# hog.winSize = wsizefor i in range(len(img_lst)):if img_lst[i].shape[1] >= wsize[1] and img_lst[i].shape[0] >= wsize[0]:roi = img_lst[i][(img_lst[i].shape[0] - wsize[0]) // 2: (img_lst[i].shape[0] - wsize[0]) // 2 + wsize[0], \(img_lst[i].shape[1] - wsize[1]) // 2: (img_lst[i].shape[1] - wsize[1]) // 2 + wsize[1]]gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)gradient_lst.append(hog.compute(gray))# return gradient_lstdef get_svm_detector(svm):sv = svm.getSupportVectors()rho, _, _ = svm.getDecisionFunction(0)sv = np.transpose(sv)return np.append(sv, [[-rho]], 0)# 主程序# 第一步:计算HOG特征neg_list = []pos_list = []gradient_lst = []labels = []hard_neg_list = []svm = cv2.ml.SVM_create()pos_list = load_images(r'G:/python_project/INRIAPerson/96X160H96/Train/pos.lst')full_neg_lst = load_images(r'G:/python_project/INRIAPerson/train_64x128_H96/neg.lst')sample_neg(full_neg_lst, neg_list, [128, 64])print(len(neg_list))computeHOGs(pos_list, gradient_lst)[labels.append(+1) for _ in range(len(pos_list))]computeHOGs(neg_list, gradient_lst)[labels.append(-1) for _ in range(len(neg_list))]# 第二步:训练SVMsvm.setCoef0(0)svm.setCoef0(0.0)svm.setDegree(3)criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 1000, 1e-3)svm.setTermCriteria(criteria)svm.setGamma(0)svm.setKernel(cv2.ml.SVM_LINEAR)svm.setNu(0.5)svm.setP(0.1)  # for EPSILON_SVR, epsilon in loss function?svm.setC(0.01)  # From paper, soft classifiersvm.setType(cv2.ml.SVM_EPS_SVR)  # C_SVC # EPSILON_SVR # may be also NU_SVR # do regression tasksvm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第三步:加入识别错误的样本,进行第二轮训练# 参考 http://masikkk.com/article/SVM-HOG-HardExample/hog = cv2.HOGDescriptor()hard_neg_list.clear()hog.setSVMDetector(get_svm_detector(svm))for i in range(len(full_neg_lst)):rects, wei = hog.detectMultiScale(full_neg_lst[i], winStride=(4, 4),padding=(8, 8), scale=1.05)for (x,y,w,h) in rects:hardExample = full_neg_lst[i][y:y+h, x:x+w]hard_neg_list.append(cv2.resize(hardExample,(64,128)))computeHOGs(hard_neg_list, gradient_lst)[labels.append(-1) for _ in range(len(hard_neg_list))]svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第四步:保存训练结果hog.setSVMDetector(get_svm_detector(svm))hog.save('myHogDector.bin')

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/124777.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2022年9月及10月

9月 1.Halcon12的HObject和Hobject halcon12 可以用HObject&#xff0c;也可以用Hobject&#xff0c;用法都一样 包括HalconCpp.h 如果附加目录中&#xff1a; C:\Program Files\MVTec\HALCON-12.0\include\halconcpp\ 在前面&#xff0c;则用 HalconCpp::HObject 如果附加目录…

springmvc-国际化中英文切换文件上传下载

1. 国际化 1.1 介绍 国际化(internationalization)&#xff0c; 简称国际化。一个产品支持国际化是指产品在无需做大的改变就能够适应不同的语言和地区的能力。i18n是指是一种让软件在开发阶段就支持多种语言的技术。 1.2 java.util.Locale 该类对象表示了特定的地理&#…

windows系统下pycharm配置anaconda

参考&#xff1a;超详细的PycharmAnconda安装配置教程_pycharm conda_罅隙的博客-CSDN博客 下载好anaconda安装后&#xff0c;比如我们安装在D盘anaconda文件夹下&#xff0c;在pycharm配置好环境激活时出现问题&#xff0c;可能是电脑没有配置环境变量 需要将一下4行添加到电…

C++入门-day01

一、认识C C融合了三种不同的编程方式 C代表的过程性语言在C基础上添加的类、结构体puls代表的面向对象语言C模板支持泛型编程 C完全兼容C的特性 Tips&#xff1a;侯捷老师提倡的Modren C是指C11、C14、C17和C20这些新标准所引入的一系列新特性和改进。在我们练习的时候也应当去…

TouchGFX之文本和字体

TouchGFX可将动态值作为文本的一部分来使用。 这可以通过在文本中使用通配符来实现。 按给定格式<*>指定通配符&#xff0c;其中的*表示不会包含在结果文本中的可选辅助文本。 一个文本中可以有至多2个通配符。 在TouchGFX 设计器中&#xff0c;只需单击“”按钮为所选文…

《机器学习实战》学习记录-ch2

PS: 个人笔记&#xff0c;建议不看 原书资料&#xff1a;https://github.com/ageron/handson-ml2 2.1数据获取 import pandas as pd data pd.read_csv(r"C:\Users\cyan\Desktop\AI\ML\handson-ml2\datasets\housing\housing.csv")data.head() data.info()<clas…

力扣:118. 杨辉三角(Python3)

题目&#xff1a; 给定一个非负整数 numRows&#xff0c;生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官…

mysql技术文档--阿里巴巴java准则《Mysql数据库建表规约》--结合阿丹理解尝试解读--国庆开卷

阿丹&#xff1a; 国庆快乐呀大家&#xff01; 在项目开始前一个好的设计、一个健康的表关系&#xff0c;不仅会让开发变的有趣舒服&#xff0c;也会在后期的维护和升级迭代中让系统不断的成长。那么今天就认识和解读一下阿里的准则&#xff01;&#xff01; 建表规约 表达是…

探索ClickHouse——使用MaterializedView存储kafka传递的数据

在《探索ClickHouse——连接Kafka和Clickhouse》中&#xff0c;我们讲解了如何使用kafka engin连接kafka&#xff0c;并读取topic中的数据。但是遇到了一个问题&#xff0c;就是数据只能读取一次&#xff0c;即使后面还有新数据发送到该topic&#xff0c;该表也读不出来。 为了…

软考-计算机网络与系统安全

七层模型 网络技术标准与协议 TCP三次握手 DHCP协议&#xff1a;固定分配、动态分配和自动分配 DNS协议&#xff1a;递归查询&#xff0c;迭代查询 计算机网络分类 按分布范围&#xff1a; 局域网城域网广域网因特网 按拓扑结构分 总线型星型环型树型分布式 网络规划与设…

Day-06 基于 Docker安装 Nginx 镜像

1.去官方公有仓库查询nginx镜像 docker search nginx 2.拉取该镜像 docker pull nginx 3. 启动镜像&#xff0c;使用nginx服务&#xff0c;代理本机8080端口(测试是不是好使) docker run -d -p 8080:80 --name nginx-8080 nginx docker ps curl 127.0.0.1:8080

MyBatisPlus(八)范围查询

说明 范围查询&#xff0c;包括&#xff1a; 大于大于等于小于小于等于在范围内在范围外 大于&#xff1a;gt 代码 Testvoid gt() {LambdaQueryWrapper<User> wrapper new LambdaQueryWrapper<>();wrapper.gt(User::getAge, 20);List<User> users mapp…