时序分解 | Matlab实现CEEMDAN完全自适应噪声集合经验模态分解时间序列信号分解

时序分解 | Matlab实现CEEMDAN完全自适应噪声集合经验模态分解时间序列信号分解

目录

    • 时序分解 | Matlab实现CEEMDAN完全自适应噪声集合经验模态分解时间序列信号分解
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现CEEMDAN完全自适应噪声集合经验模态分解时间序列信号分解
1.分解效果图 ,效果如图所示,可完全满足您的需求~
2.直接替换数据即可用 适合新手小白 注释清晰~
3.附赠案例数据 直接运行main一键出图~

程序设计

  • 完整源码和数据获取方式: Matlab实现CEEMDAN完全自适应噪声集合经验模态分解时间序列信号分解。
x=x(:)';
desvio_x=std(x);
x=x/desvio_x;modes=zeros(size(x));
temp=zeros(size(x));
aux=zeros(size(x));
acum=zeros(size(x));
iter=zeros(NR,round(log2(length(x))+5));for i=1:NRwhite_noise{i}=randn(size(x));%creates the noise realizations
end;for i=1:NRmodes_white_noise{i}=emd(white_noise{i});%calculates the modes of white gaussian noise
end;for i=1:NR %calculates the first modetemp=x+Nstd*white_noise{i};[temp, o, it]=emd(temp,'MAXMODES',1,'MAXITERATIONS',MaxIter);temp=temp(1,:);aux=aux+temp/NR;iter(i,1)=it;
end;modes=aux; %saves the first mode
k=1;
aux=zeros(size(x));
acum=sum(modes,1);while  nnz(diff(sign(diff(x-acum))))>2 %calculates the rest of the modesfor i=1:NRtamanio=size(modes_white_noise{i});if tamanio(1)>=k+1noise=modes_white_noise{i}(k,:);noise=noise/std(noise);noise=Nstd*noise;try[temp, o, it]=emd(x-acum+std(x-acum)*noise,'MAXMODES',1,'MAXITERATIONS',MaxIter);temp=temp(1,:);catchit=0;temp=x-acum;end;else[temp, o, it]=emd(x-acum,'MAXMODES',1,'MAXITERATIONS',MaxIter);temp=temp(1,:);end;aux=aux+temp/NR;iter(i,k+1)=it;    end;modes=[modes;aux];aux=zeros(size(x));acum=zeros(size(x));acum=sum(modes,1);k=k+1;
end;
modes=[modes;(x-acum)];
[a b]=size(modes);
iter=iter(:,1:a);
modes=modes*desvio_x;
its=iter;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/125164.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TCP端口崩溃,msg:socket(): Too many open files

一、现象 linux系统中运行了一个TCP服务器,该服务器监听的TCP端口为10000。但是长时间运行时发现该端口会崩溃,TCP客户端连接该端口会失败: 可以看到进行三次握手时,TCP客户端向该TCP服务器的10000端口发送了SYN报文,…

Kafka:介绍和内部工作原理

展示Kafka工作方式的简单架构。 什么是Kafka?为什么我们要使用它?它是消息队列吗? 它是一个分布式流处理平台或分布式提交日志。 Kafka通常用于实时流数据管道,即在系统之间传输数据,构建不断流动的数据转换系统和构…

机器学习笔记(一)

1.线性回归模型 2. 损失函数 3.梯度下降算法 多元特征的线性回归 当有多个影响因素的时候,公式可以改写为: 当有多个影响因素的时候为了方便计算,可以使用 Numpy下面的点积方法, np.dot(w,x) 最后再加个b 就省略了很多书写步骤,这叫做矢量化 多元回归的梯度下降 左边是一…

postgresql-聚合函数增强功能

postgresql-聚合函数增强功能 按季度统计入职员工 按季度统计入职员工 select -- extract截取,按季度进行统计入职员工总数 extract(year from hire_date), count(*) filter(where extract(quarter from hire_date) 1) "第一季度", count(*) filter(wh…

Solidity 合约漏洞,价值 38BNB 漏洞分析

Solidity 合约漏洞,价值 38BNB 漏洞分析 1. 漏洞简介 https://twitter.com/NumenAlert/status/1626447469361102850 https://twitter.com/bbbb/status/1626392605264351235 2. 相关地址或交易 攻击交易: https://bscscan.com/tx/0x146586f05a451313…

Redis高可用之哨兵模式、集群

文章目录 一、Redis哨兵模式1.1 简介1.2 哨兵模式的作用1.3 哨兵结构1.4 故障转移机制(重要)1.5 主节点选举机制 二、部署Redis哨兵模式Step1 修改 Redis 哨兵模式的配置文件(所有节点操作)Step2 实现基于VIP(虚拟IP&a…

Vue中如何进行拖拽与排序功能实现

在Vue中实现拖拽与排序功能 在Web应用程序中,实现拖拽和排序功能是非常常见的需求,特别是在管理界面、任务列表和图形用户界面等方面。Vue.js作为一个流行的JavaScript框架,提供了许多工具和库来简化拖拽和排序功能的实现。本文将介绍如何使…

想要精通算法和SQL的成长之路 - 恢复二叉搜索树和有序链表转换二叉搜索树

想要精通算法和SQL的成长之路 - 恢复二叉搜索树和有序链表转换二叉搜索树 前言一. 恢复二叉搜索树二. 有序链表转换二叉搜索树 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 恢复二叉搜索树 原题链接 首先,一个正常地二叉搜索树在中序遍历下,遍历…

MacBook 录制电脑内部声音

MacBook 录制电脑内部声音 老妈喜欢跳广场舞,现在广场舞音频下载都收费了!没办法,只能自己录歌了,外录有杂音大家也都知道,所以就只能采用内录的方式然后再用 Audition 调整一下音量大小。 一、(前置条件&a…

点餐小程序实战教程03-用户注册

我们上一篇介绍了如何创建用户数据源,有了数据源之后就需要思考如何判断用户是否注册过。根据用户在系统中的状态来判断是引导到注册页面还是直接显示首页。 1 前端API 判断用户是否注册,需要拿到用户登录状态的信息。我们在上一篇已经分析了微搭支持的…

1300*D. Alice, Bob and Candies(模拟)

Problem - 1352D - Codeforces 解析&#xff1a; 模拟即可。 #include<bits/stdc.h> using namespace std; #define int long long const int N2e55; int t,n,a[N]; signed main(){scanf("%lld",&t);while(t--){scanf("%lld",&n);for(int i…

2023年中国智能电视柜产量、需求量、市场规模及行业价格走势[图]

电视柜是随着电视机的发展和普及而演变出的家具种类&#xff0c;其主要作用是承载电视机&#xff0c;又称视听柜&#xff0c;随着生活水平的提高&#xff0c;与电视机相配套的电器设备也成为电视柜的收纳对象。 随着智能家具的发展&#xff0c;智能电视机柜的造型和风格都是有了…