机器学习必修课 - 编码分类变量 encoding categorical variables

1. 数据预处理和数据集分割

import pandas as pd
from sklearn.model_selection import train_test_split
  • 导入所需的Python库
!git clone https://github.com/JeffereyWu/Housing-prices-data.git
  • 下载数据集
# Read the data
X = pd.read_csv('/content/Housing-prices-data/train.csv', index_col='Id') 
X_test = pd.read_csv('/content/Housing-prices-data/test.csv', index_col='Id')
  • 使用Pandas的read_csv函数从CSV文件中读取数据,分别读取了训练数据(train.csv)和测试数据(test.csv),并将数据的索引列设置为’Id’。
# Remove rows with missing target, separate target from predictors
X.dropna(axis=0, subset=['SalePrice'], inplace=True)
y = X.SalePrice
X.drop(['SalePrice'], axis=1, inplace=True)
  • 删除了训练数据中带有缺失目标值(‘SalePrice’)的行。
  • 然后,将目标值(房屋销售价格)存储在变量y中,并从特征中删除了目标列,以便在后续的训练中使用特征数据。
# To keep things simple, we'll drop columns with missing values
cols_with_missing = [col for col in X.columns if X[col].isnull().any()] 
X.drop(cols_with_missing, axis=1, inplace=True)
X_test.drop(cols_with_missing, axis=1, inplace=True)
  • 删除数据中带有缺失值的列。
  • 通过遍历每一列,使用X[col].isnull().any()来检查每列是否包含任何缺失值,如果某列中至少有一个缺失值,就将其列名添加到cols_with_missing列表中。
  • 使用drop方法将这些带有缺失值的列从训练数据X和测试数据X_test中删除。
# Break off validation set from training data
X_train, X_valid, y_train, y_valid = train_test_split(X, y,train_size=0.8, test_size=0.2,random_state=0)
  • 使用train_test_split函数将训练数据X和目标值y分成训练集(X_trainy_train)和验证集(X_validy_valid)。
  • train_size参数指定了训练集的比例(80%),test_size参数指定了验证集的比例(20%),random_state参数用于控制随机分割的种子,以确保每次运行代码时分割结果都一样。

2. 评估不同方法在机器学习模型上的性能

from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error# function for comparing different approaches
def score_dataset(X_train, X_valid, y_train, y_valid):model = RandomForestRegressor(n_estimators=100, random_state=0)model.fit(X_train, y_train)preds = model.predict(X_valid)return mean_absolute_error(y_valid, preds)

3. 从训练数据和验证数据中选择只包含数值类型特征(列)的子集

drop_X_train = X_train.select_dtypes(exclude=['object'])
drop_X_valid = X_valid.select_dtypes(exclude=['object'])
  • 使用Pandas中的select_dtypes方法,它允许你根据数据类型来筛选数据框中的列。
  • exclude=['object']参数指定了要排除的数据类型是’object’类型,通常’object’类型表示非数值型数据,例如字符串或类别数据。
print("MAE from Approach 1 (Drop categorical variables):")
print(score_dataset(drop_X_train, drop_X_valid, y_train, y_valid))

MAE from Approach 1 (Drop categorical variables):
17837.82570776256

4. 查看训练数据和验证数据中特定列('Condition2’列)的唯一值

print("Unique values in 'Condition2' column in training data:", X_train['Condition2'].unique())
print("\nUnique values in 'Condition2' column in validation data:", X_valid['Condition2'].unique())
  • X_train['Condition2'].unique()的部分用于获取训练数据中’Condition2’列中的所有不重复的数值。这可以帮助你了解这一列包含哪些不同的数值或类别。
  • 输出验证数据中’Condition2’列的唯一值,同样使用了X_valid['Condition2'].unique()
  • 这可以帮助你了解验证数据中这一列的不同数值或类别,通常用于检查验证数据是否与训练数据具有相似的分布,以确保模型在新数据上的泛化性能。

Unique values in ‘Condition2’ column in training data: [‘Norm’ ‘PosA’ ‘Feedr’ ‘PosN’ ‘Artery’ ‘RRAe’]

Unique values in ‘Condition2’ column in validation data: [‘Norm’ ‘RRAn’ ‘RRNn’ ‘Artery’ ‘Feedr’ ‘PosN’]

如果你现在编写代码来执行以下操作:

  • 在训练数据上训练一个有序编码器(ordinal encoder)。
  • 使用该编码器来转换训练数据和验证数据。

那么你将会遇到一个错误。

  • 如果验证数据包含训练数据中没有出现的值,编码器将会报错,因为这些值没有与之对应的整数标签。
  • 验证数据中的’Condition2’列包含了值’RRAn’和’RRNn’,但这些值在训练数据中并没有出现。因此,如果我们尝试使用Scikit-learn中的有序编码器,代码将会抛出错误。

5. 找出哪些列可以进行有序编码(ordinal encoding),哪些列需要从数据集中删除

# Categorical columns in the training data
object_cols = [col for col in X_train.columns if X_train[col].dtype == "object"]# Columns that can be safely ordinal encoded
good_label_cols = [col for col in object_cols if set(X_valid[col]).issubset(set(X_train[col]))]# Problematic columns that will be dropped from the dataset
bad_label_cols = list(set(object_cols)-set(good_label_cols))print('Categorical columns that will be ordinal encoded:', good_label_cols)
print('\nCategorical columns that will be dropped from the dataset:', bad_label_cols)
  • 创建了一个名为object_cols的列表,用于存储训练数据X_train中的所有数据类型为"object"(通常表示字符串或类别型数据)的列。
  • 创建了一个名为good_label_cols的列表,用于存储可以安全进行有序编码的列。这些列的特点是验证数据中的所有唯一值都存在于训练数据的相应列中。通过使用set来比较验证数据和训练数据中的唯一值,可以确定哪些列可以进行有序编码,因为它们的唯一值是一致的。
  • 创建了一个名为bad_label_cols的列表,用于存储需要从数据集中删除的问题列。这些列包含了一些在验证数据中出现但在训练数据中没有出现的唯一值,因此无法进行有序编码,需要在数据预处理中删除。

Categorical columns that will be ordinal encoded: [‘MSZoning’, ‘Street’, ‘LotShape’, ‘LandContour’, ‘Utilities’, ‘LotConfig’, ‘LandSlope’, ‘Neighborhood’, ‘Condition1’, ‘BldgType’, ‘HouseStyle’, ‘RoofStyle’, ‘Exterior1st’, ‘Exterior2nd’, ‘ExterQual’, ‘ExterCond’, ‘Foundation’, ‘Heating’, ‘HeatingQC’, ‘CentralAir’, ‘KitchenQual’, ‘PavedDrive’, ‘SaleType’, ‘SaleCondition’]

Categorical columns that will be dropped from the dataset: [‘Functional’, ‘Condition2’, ‘RoofMatl’]

6. 对数据进行有序编码

from sklearn.preprocessing import OrdinalEncoder# Drop categorical columns that will not be encoded
label_X_train = X_train.drop(bad_label_cols, axis=1)
label_X_valid = X_valid.drop(bad_label_cols, axis=1)# Apply ordinal encoder 
ordinal_encoder = OrdinalEncoder()
label_X_train[good_label_cols] = ordinal_encoder.fit_transform(X_train[good_label_cols])
label_X_valid[good_label_cols] = ordinal_encoder.transform(X_valid[good_label_cols])
  • 删除不需要进行编码的分类列,bad_label_cols列表中包含了需要删除的列的名称。
  • 使用fit_transform方法将编码器拟合到训练数据的good_label_cols列上,并将结果存储在label_X_train中。
  • 使用transform方法将同样的编码器应用到验证数据的good_label_cols列上,并将结果存储在label_X_valid中。
print("MAE from Approach 2 (Ordinal Encoding):") 
print(score_dataset(label_X_train, label_X_valid, y_train, y_valid))

MAE from Approach 2 (Ordinal Encoding):
17098.01649543379

7. 统计每个分类(categorical)数据列中唯一条目的数量

# Get number of unique entries in each column with categorical data
object_nunique = list(map(lambda col: X_train[col].nunique(), object_cols))
d = dict(zip(object_cols, object_nunique))# Print number of unique entries by column, in ascending order
sorted(d.items(), key=lambda x: x[1])
  • 创建了一个名为object_nunique的列表,用于存储每个分类数据列中唯一条目的数量。
  • 它使用map函数遍历object_cols中的每一列,并对每一列使用X_train[col].nunique()来计算该列的唯一条目数量。
  • nunique()函数返回该列中不同数值的数量,因此可以用来统计分类数据中的不同类别数量。
  • 创建了一个字典d,将分类数据列的名称作为键,唯一条目数量作为值。这里使用zip函数将列名和唯一条目数量一一对应,然后将其转换为字典。
  • 使用sorted函数将字典中的项按照唯一条目数量升序排列,并以列表的形式返回结果。

在这里插入图片描述

8. 与其对数据集中的所有分类变量进行编码,只为基数(唯一值数量)小于10的列创建独热编码(One-Hot Encoding)

# Columns that will be one-hot encoded
low_cardinality_cols = [col for col in object_cols if X_train[col].nunique() < 10]# Columns that will be dropped from the dataset
high_cardinality_cols = list(set(object_cols)-set(low_cardinality_cols))print('Categorical columns that will be one-hot encoded:', low_cardinality_cols)
print('\nCategorical columns that will be dropped from the dataset:', high_cardinality_cols)
  • 遍历object_cols中的每一列,并使用X_train[col].nunique()来获取每列的唯一值数量,如果唯一值数量小于10,则将该列添加到low_cardinality_cols中。
  • 使用集合操作set(object_cols) - set(low_cardinality_cols)来找出不在low_cardinality_cols中的分类列,然后将这些列的名称存储在high_cardinality_cols中。

Categorical columns that will be one-hot encoded: [‘MSZoning’, ‘Street’, ‘LotShape’, ‘LandContour’, ‘Utilities’, ‘LotConfig’, ‘LandSlope’, ‘Condition1’, ‘Condition2’, ‘BldgType’, ‘HouseStyle’, ‘RoofStyle’, ‘RoofMatl’, ‘ExterQual’, ‘ExterCond’, ‘Foundation’, ‘Heating’, ‘HeatingQC’, ‘CentralAir’, ‘KitchenQual’, ‘Functional’, ‘PavedDrive’, ‘SaleType’, ‘SaleCondition’]

Categorical columns that will be dropped from the dataset: [‘Exterior1st’, ‘Neighborhood’, ‘Exterior2nd’]

9. 执行独热编码(One-Hot Encoding),将低基数(唯一值数量小于10)的分类(categorical)列转换为二进制形式,并将它们与数值特征合并在一起

from sklearn.preprocessing import OneHotEncoderOH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
OH_X_train = pd.DataFrame(OH_encoder.fit_transform(X_train[low_cardinality_cols]))
OH_X_valid = pd.DataFrame(OH_encoder.transform(X_valid[low_cardinality_cols]))# One-hot encoding removed index; put it back
OH_X_train.index = X_train.index
OH_X_valid.index = X_valid.index# Remove categorical columns (will replace with one-hot encoding)
num_X_train = X_train.drop(object_cols, axis=1)
num_X_valid = X_valid.drop(object_cols, axis=1)# Add one-hot encoded columns to numerical features
OH_X_train = pd.concat([num_X_train, OH_X_train], axis=1)
OH_X_valid = pd.concat([num_X_valid, OH_X_valid], axis=1)# Ensure all columns have string type
OH_X_train.columns = OH_X_train.columns.astype(str)
OH_X_valid.columns = OH_X_valid.columns.astype(str)
  • 使用fit_transform方法将独热编码应用到训练数据的low_cardinality_cols列上,并将结果存储在OH_X_train中。接着,使用transform方法将同样的编码器应用到验证数据的low_cardinality_cols列上,并将结果存储在OH_X_valid中。
  • 将独热编码后的数据的索引设置为与原始训练数据和验证数据相同,以确保它们可以正确对齐。
  • 删除了原始数据中的分类列,因为它们已经被独热编码取代。
  • 将独热编码后的数据与原始的数值特征合并在一起,以创建一个包含所有特征的新数据集。
  • 确保新数据集中的所有列都以字符串类型表示,以便与其他列一致。这是因为独热编码会生成以0和1表示的二进制列,需要将其列名转换为字符串类型。这样,数据就准备好用于训练机器学习模型了,其中包括数值特征和独热编码后的分类特征。
print("MAE from Approach 3 (One-Hot Encoding):") 
print(score_dataset(OH_X_train, OH_X_valid, y_train, y_valid))

MAE from Approach 3 (One-Hot Encoding):
17525.345719178084

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/127652.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

点击、拖拉拽开发可视化大屏,网友直呼不可思议

可视化大屏既足够炫酷&#xff0c;又能快速整合多业务系统数据&#xff0c;可视化分析数据&#xff0c;是一种可运用于博览中心、会议中心、监控中心、企业大屏看板等场景的常用数据可视化分析形式。但可视化大屏虽然好用&#xff0c;在开发制作上却难倒了不少人&#xff0c;直…

windows server 2019 、win11安装docker desktop

Docker Desktop Docker Desktop是可以部署在windows运行docker的应用服务&#xff0c;其基于windos的Hyper-V服务和WSL2内核在windos上创建一个子系统(linux)&#xff0c;从而实现其在windows上运行docker。 前提条件 WSL 查看wsl是否安装 我们可以直接在 cmd 或 powershe…

C++设计模式-生成器(Builder)

目录 C设计模式-生成器&#xff08;Builder&#xff09; 一、意图 二、适用性 三、结构 四、参与者 五、代码 C设计模式-生成器&#xff08;Builder&#xff09; 一、意图 将一个复杂对象的构建与它的表示分离&#xff0c;使得同样的构建过程可以创建不同的表示。 二、…

N分频频率综合器MS72310可pin对pin兼容SKY72310

MS72310/MS72310N1 是一款小数 N 分频频率综合器。可pin对pin兼容SKY72310。它具有极高的频率分辨率、快的输出频率切换速度和低相位噪声性能。芯片需使用外部压控振荡器&#xff0c;最大工作频率 2.1GHz&#xff0c;适合应用于无线通信系统中。MS72310/MS72310N1 采用三线高速…

Astory 访谈|了解「非常律师禹英禑」背后的故事

请先简单做个自我介绍吧&#xff1f; 大家好&#xff0c;我是 Astory 的首席制作人 Younghwa Lee&#xff0c;负责监督《非常律师禹英禑》的制作。很高兴认识你。 是什么启发了你创造了《非常律师禹英禑》系列&#xff1f; 作为制片人&#xff0c;我非常感谢全球粉丝对《非常…

ToBeWritten之让响应团队参与并做好沟通

也许每个人出生的时候都以为这世界都是为他一个人而存在的&#xff0c;当他发现自己错的时候&#xff0c;他便开始长大 少走了弯路&#xff0c;也就错过了风景&#xff0c;无论如何&#xff0c;感谢经历 转移发布平台通知&#xff1a;将不再在CSDN博客发布新文章&#xff0c;敬…

叠氮修饰的葡萄糖Ac4GIcNAz,98924-81-3

产品简介&#xff1a;The tetraacetylatedN-Azidoacetyl-glucosamine (Ac4GlcNAz) provides a non-radioactive alternativefor glycoconjugate visualization. It is cell-permeable, intracellularlyprocessed and incorporated instead of its natural monosaccharide count…

CRM系统如何自动分配线索

分配线索是销售部门很重要的一项工作&#xff0c;大量的线索中潜藏着许多企业未来的忠实客户。如果将大把的线索通过手工的方式分配给多个销售人员是一件棘手的事&#xff0c;就要借助CRM系统自动分配线索。 你的企业是否也面临这些难题&#xff1a; 1.渠道多线索多&#xff…

Shell 解释器,帮你解析一条Shell语句到底是什么意思

使用Linux系统的朋友&#xff0c;几乎每天都在使用Shell命令&#xff0c;比如 # 新建一个.sh脚本&#xff1a; vim 脚本名.sh # 运行一个.sh脚本&#xff1a; ./脚本名.sh ​​​​​​​Shell语句是一种用于与计算机操作系统交互的文本命令。Shell是计算机操作系统的命令行…

【刷题笔记10.5】LeetCode:排序链表

LeetCode&#xff1a;排序链表 一、题目描述 给你链表的头结点 head &#xff0c;请将其按 升序 排列并返回 排序后的链表 。 二、分析 这题咱们默认要求&#xff1a;空间复杂度为O(1)。所以这把咱们用自底向上的方法实现归并排序&#xff0c;则可以达到O(1) 的空间复杂…

mysql中的各种日志

错误日志 错误日志是MySQL中最重要的日志之一,它记录了当mysqld启动和停止时,以及服务器在运行过程中发生任何严重错误时的相关信息。当数据库出现任何故障导致无法正常使用时,建议首先查看此日志。 该日志是默认开启的&#xff0c;默认存放目录/var/log/,默认的日志文件名为my…

nssm nginx window 部署和开机启动服务

部署 去到Nginx官网&#xff1a;nginx news &#xff0c;然后点击“download” 在nginx的配置文件是conf目录下的nginx.conf nginx.exe http://localhost 在cmd命令窗口里面输入nginx命令(快速停止nginx) &#xff1a; nginx -s stop 或者使用(完整有序的停止nginx)命…