基于共生生物优化的BP神经网络(分类应用) - 附代码

基于共生生物优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于共生生物优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.共生生物优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 共生生物算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用共生生物算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.共生生物优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 共生生物算法应用

共生生物算法原理请参考:https://blog.csdn.net/u011835903/article/details/113134476

共生生物算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从共生生物算法的收敛曲线可以看到,整体误差是不断下降的,说明共生生物算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/129572.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

爬虫:网站三次请求获取频道内容

一、抓包 url aHR0cDovL3d3dy55amZ3LmNuLw从下图中可以看出&#xff0c;打开网页请求了三次&#xff0c;前两次在response中并不返回网页内容。 二、代码模仿第一次请求返回 <html><head><meta http-equiv"Content-Type" content"text/html; …

HTTP的基本格式

HTTP/HTTPS HTTPhttp的协议格式 HTTP 应用层,一方面是需要自定义协议,一方面也会用到一些现成的协议. HTTP协议,就是最常用到的应用层协议. 使用浏览器,打开网站,使用手机app,加载数据,这些过程大概率都是HTTP来支持的 HTTP是一个超文本传输协议, 文本>字符串 超文本>除…

每日leetcode_2441

Leetcode每日一题_2441 记录自己的成长&#xff0c;加油。 题目 解题 class Solution {public int findMaxK(int[] nums) {int k -1;Set<Integer> set new HashSet<Integer>();for (int x : nums) {set.add(x);}for (int x : nums) {if (set.contains(-x)) {k …

【JavaEE重点知识归纳】第7节:类和对象

目录 一&#xff1a;了解面向对象 1.什么是面向对象 2.面向对象和面向过程区分 二&#xff1a;类定义和使用 1.什么是类 2.练习&#xff1a;定义一个学生类 三&#xff1a;类的实例化 1.什么是实例化 2.类和对象的说明 四&#xff1a;认识this 1.为什么要有this引用…

unity脚本_Input鼠标键盘 c#

获取鼠标坐标 检测鼠标输入 如果在运行游戏场景中点击一下鼠标左键 检测鼠标抬起 选中即可 检测键盘按下 当前屏幕分辨率 注意&#xff1a;获取的是显示器的分辨率 获取设备屏幕宽高 屏幕休眠模式 窗口/全屏模式 移动设备屏幕转向

Tauri | 新版2.0路线图:更强大的插件以及支持 iOS、Android 应用构建

Tauri官方在9月7号发布了新版2.0的路线图&#xff0c;该版本主要是对移动端进行升级&#xff0c;主要特性如下&#xff1a; 强大的插件系统&#xff0c;官方把常用的功能进行了插件化&#xff08;见下图&#xff09;支持使用 Swift、Kotlin 编程语言开发插件&#xff0c;对 iO…

软件设计开发笔记6:基于QT的Modbus RTU从站

Modbus是一种常见的工业系统通讯协议。在我们的设计开发工作中经常使用到它。作为一种主从协议&#xff0c;在上一篇我们实现了Mobus RTU主站工具&#xff0c;接下来这一篇中我们将简单实现一个基于QT的Mobus RTU从站工具。 1、概述 Modbus RTU从站应用很常见&#xff0c;有一…

mysql 逻辑备份 bin-log日志恢复

一、逻辑备份 逻辑备份&#xff1a;备份的是建表&#xff0c;建库&#xff0c;插入数据等操作所执行SQL语句&#xff0c;适用于中小型数据库&#xff0c;效率相对较低&#xff0c;提供三种级别的备份&#xff0c;表级&#xff0c;库级和全库级。 本质&#xff1a;导出的是SQL语…

《视觉 SLAM 十四讲》第 7 讲 视觉里程计1 【如何根据图像 估计 相机运动】【特征点法】

github源码链接V2 文章目录 第 7 讲 视觉里程计17.1 特征点法7.1.1 特征点7.1.2 ORB 特征FAST 关键点 ⟹ \Longrightarrow ⟹ Oriented FASTBRIEF 描述子 7.1.3 特征匹配 7.2 实践 【Code】本讲 CMakeLists.txt 7.2.1 使用 OpenCV 进行 ORB 的特征匹配 【Code】7.2.2 手写 O…

CTF 全讲解:[SWPUCTF 2021 新生赛]Do_you_know_http

文章目录 参考环境题目hello.php雾现User-Agent伪造 User-AgentHackBarHackBar 插件的获取修改请求头信息 雾散 a.php雾现本地回环地址与客户端 IP 相关的 HTTP 请求头X-Forwarded-For 雾散 参考 项目描述搜索引擎Bing、GoogleAI 大模型文心一言、通义千问、讯飞星火认知大模型…

细粒度特征提取和定位用于目标检测:PPCNN

1、简介 近年来&#xff0c;深度卷积神经网络在计算机视觉上取得了优异的性能。深度卷积神经网络以精确地分类目标信息而闻名&#xff0c;并采用了简单的卷积体系结构来降低图层的复杂性。基于深度卷积神经网络概念设计的VGG网络。VGGNet在对大规模图像进行分类方面取得了巨大…

STM32--基于STM32的智能家居设计与实现

本文详细介绍基于STM32F103C8T6的智能家居设计与实现&#xff0c;详细设计资料见文末链接 一、功能模块介绍 智能家居系统系统图如下所示&#xff0c;主要包括温湿度传感器、OLED液晶显示&#xff0c;WIFI物联网模块、人体红外预警模块、烟雾传感器模块、蜂鸣器模块 &#…